NONSTOICHIOMETRIC OXIDE FORMATION IN SYSTEM Nd-Ni-O.

S.A. Nedilko*, O.G. Dzyazko*, V.A. Kulichenko**, V.A. Golubtsov*, I.V Fesisch*, L.M. Abarbarchuk***

*Kiev Taras Shevchenko National University ** Kiev National University of Engineering and Architecture ***National University of Life and Environmental Sciences of Ukraine

The non-stoichiometric compositions $Nd_{2-x}NiO_{4-3x/2+\delta}$ were obtained using coprecipitation method from nitrates solutions by K_2CO_3 followed by calcination of the obtained blend at 900°C (10 hours). It was found that full coprecipitation of ions begins at mole ratio of coprecipitated ions to precipitator n=1,75 in range pH=10-10,2.

The thermogravimetric investigations established that coprecipitated carbonates decompose in the four stages.

The first – $(25 - 392^{\circ}C)$, removing of crystallisation and adsorbed water evaporation. The second - $(392 - 520^{\circ}C)$, OH⁻ - groupes decomposition. The third (622 - 720 °C), carbonates groupes decomposition. At 850°C - neodymium nickelate phases formation.

According to X-ray phase analysis $Nd_2NiO_{4.392(5)}$ consists of orthorombic neodymium nickelate and a small of Nd_2O_3 impurity (specific reflex at d=0,3026 nm).

 $Nd_2NiO_{4.392(5)}$ unit cell parameters - a=0,545(0)nm, b=0,536(8) nm, c=0,123(3)nm, space group Bmab.

Samples $Nd_{1.9}NiO_{4.113(5)}$ and $Nd_{1.8}NiO_{4.006(5)}$ consist of non-stoichiometric phase $Nd_{2-x}NiO_{4+\delta}$ with neodymium ions deficient in sublattice.

The orthorhombic unit cell parameters for $Nd_{1.9}NiO_{4.113(5)}$ - a=0,541(9) nm, b=0,535(4) nm, c=0,123(2) nm, Nd_{1.8}NiO_{4.006(5)} - a=0,541(5) nm, b=0,535(4) nm, c=0,123(2) nm.

The stabilization of non-stoichiometric neodymium nickelate phases likely is due to ion vacancies formation.

 $Nd_{2-x}NiO_{4-3x/2+\delta}$ samples with 0,2<x≤0,5 are polyphase and contain Nd_2NiO_4 , NiO and Nd_2O_3 . It was not observed $Nd_3Ni_2O_7$ phase formation in our experimental conditions.