УДК 546.185

КРИСТАЛІЧНІ СТРУКТУРИ НОВИХ ПОТРІЙНИХ $\Phi OC \Phi ATIB Ca_9 CoM(PO_4)_7 (M - Li, Na, K)$

Лаврик Р.В., кандидат хімічних наук Національний університет біоресурсів і природокористування України

Синтезовано ряд потрійних фосфатів Ca₉CoM(PO₄)₇ (M – Li, Na, K) та встановлено особливості їх кристалічної будови.

Вступ. При дослідженні кристалічної структури β-Са₃(РО₄)₉ [1] встановлено можливість ізо- та гетеровалентного заміщення йонів Ca²⁺ на M⁺, Me²⁺, R³⁺ та R⁴⁺ катіони [2]. Заміщення важко реалізувати за допомогою твердофазних реакцій на основі структури β-Са₃(РО₄)₉. Тверді розчини на основі $Ca_{3-x}Me_x(PO_4)_9$ (де Me – Mg, Mn, Fe, Co, Ni, Cu, Zn, Cd, Sr, Pb, Ba) були вивчені Нордом [3]. Схеми гетеровалентного заміщення детально описані в праці [4]. Потрійні фосфати, з типовою кристалічною структурою β-Ca₃(PO₄)₉ було вивчено тільки для Ca₉MgM(PO₄)₇ (M – Li, Na, K) і Са₁₈Na₃Fe(PO₄)₁₄. Сполуки типу вітлокіту, які містять катіони кобальту, становлять великий інтерес з точки зору їхніх каталітичних властивостей [5].

Експеримент. Синтез. Фосфати $Ca_9CoM(PO_4)_7$ (M – Li, Na, K) було синтезовано твердофазним способом за реакціями, в яких взаємодіяли у стехіометричних пропорціях суміші речовин Са₂Р₂О₇, $CaCO_3$, Co_3O_4 і відповідних карбонатів M₂CO₃ (М – Li, Na, K) за температури 1273 К протягом 50-90 год в атмосфері повітря. Сполуки відмивали від домішок реагентів розчинами слабких кислот. Відповідні параметри елементарної гратки такі: а = 10,3275(1) Å с= 37,103(1) Å, М -Li; a = 10,3514(1) Å, c = 37,073(1) Å, M -Na; a = 10,4015(1) Å, c = 37,012(1) Å, M – K. Структурні дослідження. Дані силової дифракції обраховано для структур за кімнатної температури при використанні методу Брега-Брентано (з застосуванням дифрактометра «Siemens D500» з моно-хроматором SiO₂ (Cu, Kal випромінювання, X = 1.54060 Å). Дані експерименту було зібрано в інтервалі 20 кутів із інтервалу 10–110° з «кроком» $\Delta(2\theta) = 0.01°$.

Параметри кристалічної гратки уточнено при використанні пакету програм «RIETAN-97» [4], з урахуванням фактора заміщення йонів Ca²⁺, Co²⁺, Li⁺, Na⁺, K⁺ O²⁻. Структура базується на поліедрі з 15 атомів, який має дещо деформовану форму.

Катіони кобальту займають позиції в поліедрах M(5), аналогічно структурі $Ca_{9,5}Me(PO_4)_7$ (Me – Co, Cu). Катіони лужних металів займають позиції M(4), оскільки в кристалічній гратці фосфатів $Ca_9MgM(PO_4)_7$, $Ca_{10}M(PO_4)_7$ (M – Li, Na, K) та $Ca_{10}K(VO_4)_7$ [3]. Експериментальні дані та параметри структур $Ca_9CoM(PO_4)_7$ (M – Li, Na, K), зібрані після повної обробки відповідними програмами, наведено в табл. 1.

Атомні координати і відповідні кути, міжатомні відстані в поліедрах показано в табл. 2 і 3.

Результати та їх обговорення. Кристалічні структури $Ca_9CoM(PO_4)_7$ (M – Li, Na, K) можна порівняти зі структурою $Ca_{9.5}Co(PO_4)_7$ з параметрами, в

Параметр	Ca ₉ CoLi(PO ₄) ₇	Ca ₉ CoNa(PO ₄) ₇	Ca ₉ CoK(PO ₄) ₇
Температура	297 К	297 К	297 К
Просторова група	R3c		R3c
Z	6	6	6
29 інтервали (°)	10 - 110	10 - 110	10 - 110
"Крок,, сканування	0.01	0.01	0.01
I _{тах} (обраховані)	30216	38716	30285
Параметри:			
a (A)	10.3276(1)	10.3515	10.40171)
c (A)	37.100(1)	37.073(1)	37.009(1)
$V(A^3)$	3426.98	3440.32	3467.75
Кількість рефлексів	480	482	488
R фактор:			
R_{WP}, R_{P}	3.55; 2.60	2.83; 2.14	3.70; 2.63
R _I ;R _F	3.75; 2.39	2.54; 1.70	1.50; 0.88
S	1.80	1.50	1.84
D-W d	0.69	0.95	0.64

Таблиця 1. Найважливіші параметри для структури Са₉CoM(PO₄)₇ (M - Li, Na, K)

яких є заміщення (Са²⁺ + □) (де □ – вакансія) на йони 2М+ в поліедрі М(4). У світлі цього, структура $Ca_{9.5}Co(PO_4)_7$ може бути дещо схожою зі структурою-прототипом β-Ca₃(PO₄)₂ [1] зі заміщеними йонами Ca²⁺ на Co²⁺ в октаедрах M(5) [2]. Найважливіші довжини зв'язків Ca(l)-O, Ca(2)-О та Ca(3)-О катіонів з оксигеном, дещо схожі за величиною та неведені у таблиці (з урахуванням експериментальних погрішностей та похибок для кристалічних структур $Ca_9CoM(PO_{4)7}$ (M = Li, Na, K) та β-Ca₃(PO₄)₂) [1]. Різниця є лише у звязках у катіонах, які спостерігаються для поліедрів M(4) та M(5). Октаедри $Co(5)O_6$ B $Ca_9CoM(PO_4)_7$ (M – Li, Na, K) дуже «замкнуті» і тому в них дуже важко замістити атоми оксигену (табл. 3) [1].

Встановлено, що поліедр M(4) у структурі (β -Ca₃(PO₄)₂ вздовж осі c (об'ємні координати) можна розглядати як M(4) O₁₅: O₃(12)O₃(21)O₃(22)O₃(23)O₃(33) (рис.).

Катіони Li+ у структурі $Ca_9CoLi(PO_4)_7$ локалізовані і формують оточення з атомів O(21) (Z_{Li} — 0,164(2), $Z_O(21)$ =

0,1752(3)). Відстань Li-O(22) = 2,94(3) Å є найдовшою, що зазвичай спостерігається, адже в цій сполуці довжини зв'язків знаходяться у межах Li-O (2,00(6)-2,41(6) Å) [4]. Три зв'язки Li-O(21) = 2,35(1) Å також дещо видовжені, тому що сума йонних радіусів становить $R(Li+) + R(O^{2-}) =$ 2,14 Å. Таким чином, катіони Li+ легко зв'язуються з атомами оксигену і, як не дивно, мають координаційне число 3. Розглядаючи заміщення Li+ вздовж осі (0, 0, z) по координатах (x, y, z) маємо еквівалентні позиції по осі х та у з урахуванекспериментальних похибок. ням Додавання ж катіонів Li+ в дві позиції (0, $(0, z_1)$ та $(0, 0, z_2)$ подібне як і в структурі $Ca_9MgLi(PO_4)_7$ [4] неможливе. Na+ та K+ в гратці Ca₉CoM(PO₄)₇ (M = Na, K) та катіон Са²⁺ в гратці Са_{9.5}Со(РО₄)₇ [2] і β-Ca₃(PO₄)₉ [1] локалізовані і формують навколо себе атоми 0(21). Відстані К-О(12) = 3,04(1) Å та K-O(22) = 3,21(1) Å в структурі Ca₀CoK(PO₄)₇ дещо відрізняються від відповідних відстаней Na-O (2,92(1), 3,36(1) Å) в Ca₉CoNa(PO₄)₇ та Ca-O (2,90(6), 3,39(6) Å) в $Ca_{9.5}Co(P0_4)_7$.

ХІМІЯ

Р.В Лаврик

Таблиця 2. Атомні координати з урахуванням ізотропічного температурного фактору для структур Ca₉CoM(PO₄)₇ (M - Li, Na, K

Відстань	Li	Na	К
Ca(1)-O(12)	2.43(1)	2.45(1)	2.47(1)
-O(22)	2.80(2)	2.86(1)	2.95(1)
-O(23)	2.42(1)	2.47(1)	2.50(1)
-O(24)	2.48(2)	2.50(1)	2.52(2)
-O'(24)	2.50(2)	2.55(1)	2.50(2)
-O(31)	2.49(1)	2.42(1)	2.42(1)
-O(32)	2.29(1)	2.26(1)	2.29(1)
-O(34)	2.35(1)	2.41(1)	2.37(1)
Ca(2)-O(12)	2.49(1)	2.37(1)	2.38(1)
-O(21)	2.45(1)	2.46(1)	2.38(1)
-O(22)	2.38(1)	2.52(1)	2.48(1)
-O(23)	2.38(1)	2.38(1)	2.37(1)
-O(32)	2.71(1)	2.64(1)	2.70(1)
-O(33)	2.76(1)	2.75(1)	2.70(1)
-O(33)	2.38(2)	2.36(1)	2.35(2)
-O(34)	2.43(1)	2.40(1)	2.42(1)
Ca(3)-O(11)	2.478(4)	2.471(4)	2.461(5)
-O(12)	2.92(1)	2.96(1)	2.96(1)
-O(21)	2.57(1)	2.60(1)	2.61(1)
-O(22)	2.51(1)	2.46(1)	2.51(1)
-O(23)	2.40(1)	2.37(1)	2.35(1)
-O(31)	2.36(1)	2.44(1)	2.39(1)
-O(32)	2.65(1)	2.66(1)	2.63(1)
-O(34)	2.47(1)	2.49(1)	2.48(1)
-O'(34)	2.50(1)	2.51(1)	2.57(1)

Таблиця 3. Найважливіші міжатомні відстані (Å) для Ca₉CoM(PO₄)₇ (M - Li, Na, K)

Рис. Оточення М(4)О₁₅ і октаедри РО₄3- груп Координаційне число катіонів К+ при цьому становить 9.

Подібні параметри елементарних кристалічних граток розглянуто в літературі для серії фосфатів Са₉MgM(PO₄)₇ (M = Li, Na, К [4], 0,5(Ca + □) [18]) та $Ca_{10}M(PO_4)_7$ (M = Li, Na, K [14], 0,5(Ca + □) [1]). При цьому параметри *а* сполук з M(4) = 0,5(Са + □-вакансія) значно більші ніж у випадку як для йону натрія, але для параметра с поліедра M(4) = 0,5(Ca + 1) – значно більші ніж у попередньому випадку. Такі неочікувані зміни в параметрах структури можуть пояснюватись наступним чином. В гратці Ca₀CoM(PO₄)₇ (M = Na, K) та інших типових сполуках зі збільшенням катіонного радіусу лужного металу є тенденція силового замикання по обєму вздовж осі а та b. Це істотно впливає на зростання параметра а.

Р.В Лаврик

Висновки

Твердофазним методом синтезовано нові потрійні фосфати $Ca_9CoM(PO_4)_7$ (де M – Li, Na, K).

Кристалічні структури розшифровано методом РСА і уточнено в тригональній сингонії (просторова група R3c) параметри елементарної комірки: а = 10,3275(1) Å c= 37,103(1) Å, M – Li; a = 10,3514(1) Å, c = 37,073(1) Å, M – Na; a = 10,4015(1) Å, c = 37,012(1) Å, M – K.

Усі незалежні катіонні позиції присутні в структурі $Ca_9CoM(PO_4)_7$ (M – Li, Na, K). Позиції кобальту зайняті в октаедрах M(5), а лужні метали утворюють поліедри і займають позиції M(4).

Література _

- 1. Lazoryak B.I. The structure of b- Ca₃(PO₄)₂ // Rus. Chem. Rev. 1996. 65. P. 287.
- 2. Nord A.G., Miner N. Jb. The structure of Ca_{3-x} Me_x (PO₄)₂ // Denm. Chem. 1983. 11. P. 489.
- Detected and synthesis of geterovalency phosphates / Morozov V.A., Presnyakov LA., Belik A.A. et al. // Crystallogr. Reports. – 1997. – 42. – P. 758.
- The synthesis and structure of Ca₉ Mg M (PO₄)₇ (M Li, Na, K) / Strunenkova T.V., Morozov V.A., Khasanov S.S. et al. // Crystallogr. Reports. 1997. 42. P. 55.
- 5. The structure of Ca₉ Mg M (PO₄)₇ and Ca₁₈ Na ₃ Fe (PO₄)₁₄ (M Li, Na, K) / Strunenkova T.V., Morozov V.A., Khasanov S.S. et al. // Crystallogr. Reports. – 1998. – **43**. – P. 255.

АННОТАЦИЯ

SUMMARY

Лаврик Р.В. Кристаллические структуры новых тройных фосфатов $Ca_9CoM(PO_4)_7$ (M-Li, Na, K) // Биоресурсы и природопользование. – 2014. – 6, №5–6. – С.41–45.

Синтезирован ряд тройных фосфатов Са₉CoM(PO₄)₇ (M –Li, Na, K) и установлены особенности их кристаллического строения. **R. Lavryk.** The crystal structures new triple phosphates $Ca_{9}CoM(PO_{4})_{7}$ (M - Li, Na, K) // Biological Resources and Nature Managment.-2014. - 6, $N_{9}5$ -6. - P.41-45.

New triple phosphates $Ca_9CoM(PO_4)_7$ (M-Li, Na, K) are synthesized by solid state method and peculiarities of their crystal structures are determined.