DOI: http://dx.doi.org/10.31548/biologiya2018.287.071

А. S. Postovoitova, Ya. V. Рirko, Ya. B. Blume


In modern selection, DNA markers are an indispensable tool for identifying and selecting genotypes of economically valuable crops. New and promising direction of development of molecular markers is a gene-targeted markers (GTMs), namely markers, which are based on the identified intron length polymorphism of genes (ILP). The aim of the study is to evaluate the usefulness of the length polymorphism of the second actin gene intron (АВР-actinbasepolymorphism) for DNA-profiling  varieties of plants from family Solanaceae.DNA was isolated from seedlings using CTAB-method. PCR was conducted using our own universal АВР primers. The fragments were separated by electrophoresis in a 6% polyacrylamide gel, and visualized by silverstains. 12 varieties of tomato (S. lycopersicum) and 4 potato varieties (S. tuberosum) were analyzed. Each tomato variety contained at least 7 fragments of II-nd intron, but only one polymorphic bend was detected. The АВР-profiles of the potato varieties were more heterogeneous. The different varieties of tomatoes and potatoes were identificated by ABP marker system. It was shown the significant difference between the profiles of the analyzed species. In general, ABP-markers are a reliable source of genetic information and can be widely used for genotyping and evaluating of the differentiation of commercially valuable plantsof Solanaceae.

Повний текст:



Khlestkina, E. K. (2013). Molecular markers in genetic studies and breeding. Vavilov J. Genetics Breed., 17, 1044-1054.


Andersen, J. R., Lubberstedt, T. (2003). Functional markers in plants. Trends Plant Sci., 8, 554-560. https://doi.org/10.1016/j.tplants.2003.09.010

Bernatzky, R., Tanksley, S. D. (1986). Toward a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics, 112, 887-898.

Saliba-Colombani, V., Causse, M., Gervais, L., Philouze, J. (2000). Efficiency of RFLP, RAPD, and AFLP markers for the construction of an intraspecific map of the tomato genome. Genome, 43, 29-40.


Ohyama, A., Asamizu, E., Negoro, S., Miyatake, K., Yamaguchi, H., Tabata, S., Fukuoka, H. (2009). Characterization of tomato SSR markers developed using BAC-end and cDNA sequences from genome databases. Mol. Breed., 23, 685-691. https://doi.org/10.1007/s11032-009-9265-z

Gupta, P. K., Rustgi, S. (2004). Molecular markers from the transcribed/expressed region of the genome in higher plants. Funct. Integr. Genomics., 4, 139-162. https://doi.org/10.1007/s10142-004-0107-0

Wang, X., Zhao, X., Zhu, J., Wu, W. (2005). Genome-wide investigation of intron length polymorphisms and their potential as molecular markers in rice (Oryza sativa L.). DNARes., 12, 417-427. https://doi.org/10.1093/dnares/dsi019

Postovoitova, A. S., Bayer, G. Ya., Pydiura, N. A., Pastukhova, N. L., Pirko, Ya.V., Yemets, A. I., Blume, Ya.B. (2015). Poshuk ta analiz poslidovnostey geniv aktinu v genomi l'onu [Search and analysis of sequences of the actin genes in flax genome]. NUBIP scientific reports, 8(57). UPL: http://nd.nubip.edu.ua/2015_8/index.html/

Shirasawa, K., Hirakawa, H. (2013). DNA marker applications to molecular genetics and genomics in tomato. Breed. Sci., 63, 21-30.


Milbourne, B. D., Meyer, R., Bradshaw, J. E., Baird, E., Bonar, N., Provan, J. (2010). Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivated potato. Mol. Breed., 3(2), 127-136.


Sato, Sh., Tabata, S., Hirakawa, H., Asamozu, E. (2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485, 635-641. https://doi.org/10.1038/nature11119

Xu, X., Pan, S., Cheng, S., Zhang, B. (2011). Genome sequence and analysis of the tuber crop potato. Nature, 475(7355), 189-195.


Sambrook, J., David, W. R. (2001). Molecular Сloning: A Laboratory Manua. Cold Spring Harbor, 2, 2344.

Rahman, M. H., Jaquish, B., Khasa, P. D. (2000). Optimization of PCR protocol in microsatellite analysis with silver and SYBR stains. Plant Mol. Biol. Rep., 18, 339-348.


Gunning, P. W., Ghoshdastider, U., Whitaker, S., Popp, D., Robinson, R. C. (2015). The evolution of compositionally and functionally distinct actin filaments.J. Cell Sci., 128(11), 2009-2019. https://doi.org/10.1242/jcs.165563

Postovoitova, A. S., Pirko, Ya.V., Blume, Ya.B. (2016). Polimorfizm dovgin drugogo intronu geniv actinu v genomi Linum usitatissimum L. [The second intron length polymorphism of actin genes in Linum usitatissimum L. genome]. Factors of experimental evolution of organisms, 19, 38 - 42.

Postovoitova, A. S., Yotka, O. Y., Pirko, Ya. V., Blume, Ya. B. (2017). Analysis of polymorphism of the lengths of introns of actin genes in representatives of the genus LINUM. Plant biology and biotechnology: materials of the III conference of young scientists. Kyiv (Ukraine), 34.

Bardini, M., Lee, D., Donini, P., Mariani, A., Giani, S., Toschi, M., Lowe, C., Breviario, D. (2004). Tubulin-based polymorphism (TBP): a new tool, based on functionally relevant sequences, to assess genetic diversity in plant species. Genome, 47, 281-291. https://doi.org/10.1139/g03-132

Rabokon, A. N., Pirko, Ya.V., Demkovych, A. Ye., Blume, Ya.B. (2018). Comparative analysis of the efficiency of intron-length polymorphism of β-tubulin genes and microsatellite loci for flax varieties genotyping. Cytol. Genet., 52(1),1-10.


Rabokon, A. N., Demkovych, A., Pirko, Ya., Blume, Ya. (2015). Doslidgennya polimorfizmu dovgeni introniv geniv β-tubulinu u sortiv Triticum aestivum L. ta Hordeum vulgare L. [Studing of β-tubulin gene intron length polymorphism of Triticum aestivum L. and Hordeum vulgare L.varieties]. Factors of experimental evolution of organisms, 1, 82 - 86.

Rabokon, A., Demkovych, A., Sozinov, A., Kozub, N., Sozinov, I., Pirko, Ya., Blume, Y. (2017). Intron length polymorphism of β-tubulin genes of Aegilops biuncialis Vis. Cell Biol. Intl. https://doi.org/10.1002/cbin.10886

Метрики статей

Завантаження метрик ...

Metrics powered by PLOS ALM


  • Поки немає зовнішніх посилань.