Analysis of methods of diagnosis of bacterial diseases of tomatoes in Ukraine


Y.V. Kolomiiets, L.M. Butsenko


Annotation. Effective and economical methods of detection and identification necessary for the study of ecology, pathogenesis and limiting the spread of phytopathogenic bacteria, as well as for seed certification programs. The available methods for the detection and identification of four main causative agents of bacterial diseases of tomatoes Xanthomonas vesicatonia, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, Pectobacterium carotovorum subsp. carotovorum, which are common in Ukraine. These methods include microbiological using selective media, serological, molecular methods based on the amplification of unique DNA sequences. The use of modern biochemical test systems has eliminated the need to identify phytopathogenic bacteria using long-term routine methods. Commercially available commercial test systems provide rapid identification at the species level and also detect new and quarantine pathogens. PCR-based methods have advantages over traditional diagnostic tests because isolates do not need to be cultured before detection and protocols are highly sensitive and fast.

Ключові слова

bacterial diseases, tomatoes, diagnostic methods, serology, PCR


Peňázová E., Dvořák M., Ragasová L., Kiss T., Pečenka J.,

Čechová J., Eichmeier A. Multiplex real-time PCR for the detection of Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato and pathogenic Xanthomonas species on tomato plants. PLoS One. 2020, 7;15(1), e0227559.

Kolomiets JV, Grygoryuk IP, Butsenko LM. Bacterial diseases of tomato plants in terms of open and covered growing of Ukraine. Annals of Agrarian Science. 2017; 15(2): 213-216.

De León L, Siverio F, López MM, Rodríguez A. Clavibacter michiganensis subsp. michiganensis, a seedborne tomato pathogen: healthy seeds are still the goal. Plant Dis. 2011; 95: 1328-1338.

Chalupowicz L, Zellermann E-M, Fluegel M, Dror O, Eichenlaub R, Gartemann K-H, et al. Colonization and movement of GFP-labeled Clavibacter michiganensis subsp. michiganensis during tomato infection. Phytopathology. 2012; 102: 23-31.

Butsenko, L., Pasichnyk, L., Kolomiiets, Y., Kalinichenko, A. (2020) The effect of pesticides on the tomato bacterial speck disease pathogen Pseudomonas syringae pv. tomato. Applied Sciences (Switzerland), 10(9), 3263.

Kolomiiets, Y.V., Grygoryuk, I.P. & Butsenko, L.M. (2017) Bacterial diseases of tomato plants. Monograph. Кyiv: CP Кomprynt, 348 p.

Schwartz AR, Potnis N, Timilsina S, Wilson M, Patane J, Martins J, et al. Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity. Front Microbiol. 2015; 6:535.

Agyemang PA., Kabir MdN, Kersey CM, Dumenyo CK. The bacterial soft rot pathogens, Pectobacterium carotovorum and P. atrosepticum, respond to different classes of virulence-inducing host chemical signals. Horticulturae 2020, 6, 13.

Kolomiiets, Y., Grygoryuk, I., Butsenko, L., Bohoslavets, V., Blume, Y., Yemets, A. (2020) Identification and biological properties of the pathogen of soft rot of tomatoes in the greenhouse. Open Agriculture Journal, 14(1), 290-298.

EPPO. EPPO A2 List of pests recommended for regulation as quarantine pests, version 2018-09. 2018 [cited 1 May 2019]. In: European and Mediterranean Plant Protection Organisation [Internet]. Available from:

Review of the spread of quarantine organisms in Ukraine. Available from:

Olivier, V., Baloche, A., Drouin, A., Audusseau, C., Paillard, S., and Soubelet, H. (2010). Internal methods comparison study and inter-laboratory study on C. michiganensis subsp. michiganensis in tomato seeds1. EPPO Bull. 40: 248-256.

Sen Y., Wolf J., Visserand R. G. F., Heusden S. (2015) Bacterial Canker of Tomato: Current Knowledge of Detection, Management, Resistance, and Interactions. Plant Disease, 99 (1), P. 4-13.

Ftayeh, R. M., von Tiedemann, A., and Rudolph, K. W. E. (2011). A new selective medium for isolation of C. michiganensis subsp. michiganensis from tomato plants and seed. Phytopathology, 101, 1355-1364.

Xu, X. L., Miller, S. A., Baysal-Gurel, F., Gartemann, K. H., Eichenlaub, R., and Rajashekara, G. 2010. Bioluminescence imaging of Clavibacter michiganensis subsp. michiganensis infection of tomato seeds and plants. Appl. Environ. Microbiol. 76:3978-3988.

Saint-Vincent PMB, Ridout M, Engle NL, Lawrence TJ, Yeary ML, Tschaplinski TJ., Newcombe G, Pelletier DA. (2020) Isolation, characterization, and pathogenicity of two Pseudomonas syringae pathovars from populus trichocarpa seeds. Microorganisms, 8, 1137.

Sijam K, Chang CJ & Gitaitis RD (1992) A medium for differentiating tomato and pepper strains of Xanthomonas campestris pv. vesicatoria. Canadian Journal of Plant Pathology 14, 182-184.

OEPP/EPPO, (2013) "PM 7/110 (1) Xanthomonas spp. (Xanthomonas euvesicatoria, Xanthomonas gardneri, Xanthomonas perforans, Xanthomonas vesicatoria) causing bacterial spot of tomato and sweet pepper," OEPP/EPPO Bulletin, 43, 7-20.

Czajkowski R, Pérombelon McM, Jafra S, Lojkowska E, Potrykus M, van der Wolf Jm, Sledz W. (2015) Detection, identification and differentiation of Pectobacterium and Dickeya species causing potato blackleg and tuber soft rot: a review. Ann Appl Biol, 166(1), 18-38.

EPPO (2013). Clavibacter michiganensis subsp. michiganensis. OEPP/ EPPO Bull 43, 46-67.

Palomo, J. L., Lo' pez, M. M., Garcı'a-Benevides, P., Vela' zquez, E. & Martı'nez-Molina, E. (2006). Evaluation of the API 50CH and API ZYM systems for rapid characterization of Clavibacter michiganensis subsp. sepedonicus, causal agent of potato ring rot. Eur J Plant Pathol 115, 443-451

Yasuhara-Bell J, Alvarez AM. (2015) Seed-associated subspecies of the genus Clavibacter are clearly distinguishable from Clavibacter michiganensis subsp. michiganensis. International Journal of Systematic and Evolutionary Microbiology, 65, 811-826.

Choi O, Kang B, Cho SK. (2017) Identification of Pseudomonas syringae pv. syringae causing bacterial leaf blight of Miscanthus sinensis. Journal of Plant Diseases and Protection, 124, 97-100. doi: 10.1007/s41348-016-0058

Datta S, Kumar RS, Ayyadurai N, Kumar S, Sakthivel N. (2004) Polysaccharides of pseudomonas pathovar strains that infect pea, tomato, and soya bean. Curr Microbiol, 49(1), 35-41.

O'Hara, C. M. (2005) Manual and automated instrumentation for identification of Enterobacteriaceae and other aerobic Gram-negative Bacilli. Clin Microbiol Rev., 18(1), 147-162.

O'Hara, C. M., Weinstein M. P., Miller J. M. (2003) Manual and automated systems for detection and identification of microorganisms, p. 185-207. In P. R. Murray, E. J. Baron, M. A. Pfaller, J. H. Jorgensen, and R. H. Yolken (ed.), Manual of clinical microbiology, 8th ed. American Society for Microbiology, Washington, D.C.

Franco-Duarte R. (2019) Advances in chemical and biological methods to identify microorganisms - from past to present. Microorganisms, 7(5), 130.

Fundamental phytopathology. Ed. Yu. T. Dyakova. M., 2012.512 p.

Olivier V., Baloche A., Drouin A., Audusseau C., Paillard S., Soubelet H. (2010) Internal methods comparison study and inter-laboratory study on

C. michiganensis subsp. michiganensis in tomato seeds1. EPPO Bull,

, 248-256.

Veena M. S., van Vuurde J. W. Indirect immunofluorescence colony staining method for detecting bacterial pathogens of tomato. Journal of Microbiological Methods. 2002. Vol. 49 (1). P. 7-11.

Nemeth J., Vuurde, J. W. L. V. Development of immunofluorescence colony staining (IFC) for detection of Xanthomonas campestris pv. vesicatoria and Clavibacter michiganensis subsp. michiganensis in tomato seeds. Seed Science and Technology. 2006. Vol. 34. P. 85-100.

de Leon L., Siverio F., Rodriguez A. 2006. Detection of Clavibacter michiganensis subsp. michiganensis in tomato seeds using immunomagnetic separation. Journal of Microbiological Methods. Vol. 67. P. 141-149.

Palacio-Bielsa А. (2009) РCR detection and identification of plant-pathogenic bacteria updated review of protocols (1989-2007). Journal of Plant Pathology, 91, 249-297.

Dreier J., Bermpohl A., Eichenlaub R., 1995. Southern hybridization and PCR for specific detection of phytopathogenic Clavibacter michiganensis subsp. michiganensis. Phytopathology 85: 462-468.

Santos M.S., Cruz L., Norskov P., Rasmussen O.F., 1997. A rapid and sensitive detection of Clavibacter michiganensis subsp. michiganensis in tomato seeds by polymerase chain reaction. Seed Science and Technology 25: 581-584.

Anonymous, 2005a. EPPO Standards PM 7/42 (1) Diagnostics. Clavibacter michiganensis subsp. michiganensis. Bulletin OEPP/EPPO Bulletin 35: 275-284.

Milijasevic S., Todorovic B., Balaz J., 2006. Clavibacter michiganensis subsp. michiganensis, bacterial canker of tomato: 1. Conventional and molecular identification. Pesticides and Phytomedicine 21: 185-192.

Hadas R., Kritzman G., Klietman F., Gefen T., Manulis S., 2005. Comparison of extraction procedures and determination of the detection threshold for Clavibacter michiganensis ssp. michiganensis in tomato seeds. Plant Pathology 54: 643-649.

Zaccardelli M., Spasiano A., Bazzi C., Merighi M., 2005. Identification and in planta detection of Pseudomonas syringae pv. tomato using PCR amplification of hrpZPst. European Journal of Plant Pathology 111: 85-90.

Fanelli V., Cariddi C., Finetti-Sialer M., 2007. Selective detection of Pseudomonas syringae pv. tomato using dot blot hybridization and real-time PCR. Plant Pathology 56: 683-691

Bereswill S., Bugert P., Völsky B., Ullrich M., Bender C.L., Geider K., 1994. Identification and relatedness of coronatine-producing Pseudomonas syringae pathovars by PCR analysis and sequence determination of the amplification products. Applied and Environmental Microbiology 60: 2924-2930

Cuppels D.A., Louws F.J., Ainsworth T., 2006. Development and evaluation of PCR-based diagnostic assays for the bacterial speck and bacterial spot pathogens in tomato. Plant Disease 90: 451-458.

Leite R.P., Jones J.B., Somodi G.C., Minsavage G.V., Stall R.E., 1995. Detection of Xanthomonas campestris pv. vesicatoria associated with pepper and tomato seed by DNA amplification. Plant Disease 79: 917-922.

Parka D S, Shima J K, Kima J S, Limb C K, Shresthab R, Hahna J H, Kimd H G (2009) Sensitive and specific detection of Xanthomonas campestris pv. vesicatoria by PCR using pathovar-specific primers based on rhs family gene sequences. Microbiological Research, 164, 36-42.

Kang H.W., Kwon S.W., Go S.J., 2003. PCR-based specific and sensitive detection of Pectobacterium carotovorum ssp. carotovorum by primers generated from a URP-PCR fingerprinting-derived polymorphic band. Plant Pathology 52: 127-133.

Toth I.K., Hyman L.J., Wood J.R., 1999. A one step PCRbased method for the detection of economically important soft rot Erwinia species on micropropagated potato plants. Journal of Applied Microbiology 87: 158-166.

Atallah Z.K., Stevenson W.R., 2006. A methodology to detect and quantify five pathogens causing potato tuber decay using real-time quantitative polymerase chain reaction. Phytopathology 96: 1037-1045.

Darrasse A., Priou S., Kotoujansky A., Bertheau Y., 1994. PCR and Restriction-Fragment-Lenght Polymorphism of a pel gene as a tool to identify Erwinia carotovora in relation to potato diseases. Applied and Environmental Microbiology 60: 1437-1443.

Helias V., Le Roux A.C., Bertheau Y., Andrivon D., Gauthier J.P., Jouani B., 1998. Characterisation of Erwinia carotovora subspecies and detection of Erwinia carotovora subsp. atroseptica in potato plants, soil and water extracts with PCR-based methods. European Journal of Plant Pathology 104: 685-699.

Метрики статей

Завантаження метрик ...

Metrics powered by PLOS ALM


  • Поки немає зовнішніх посилань.