Larisa Kladnytska, Anatoliy Mazurkevych


The studies were conducted on 2-3-months-old males of
C57BL/6 mice weighing 20-24 g. Obtaining and cultivating of mesenchimal
stem cells (MSCs) were carried out in a sterile laminar box with compliance of
conditions of asepsis and antiseptics. MSCs of the 2, 4, 7 and 12 passages
were analyzed. Morphometric analysis was performed using a light
microscopy. Morphometric parameters such as cell and nucleus area or
nuclear-cytoplasmic ratio (NCR) were calculated using the Axiovision light
microscope (Carl Zeiss, Germany) and ImageJ 1.45 software. Trypan blue
dye used for investigation of the viability of MSC.
The morphological features of cells during cultivation changes: at first
cells have a spindle-like shape with two long cytoplasmic processes, located
bipolar. In later passages, cells have a significant number of cytoplasm
processes, bipolar arrangement of processes changes to stellar. The NCR
index of MSC significant decreases at the 4 passage by 12,9 % (p ≤ 0,05), at
the 7 passage - by 35,3 % (p <0,001), at the 12 passage - by 76,6 % (p
<0,001) compared to the initial state. The proliferative activity of the MSC of
the bone marrow during cultivation significantly dereases at the later
passages. Cell resistance to apoptosis induced by cultivation in the serum-free
medium is fairly high. The number of cells in the state of apoptosis was
14,0±1,74 at the 4 passage and was reliably increased at the 12 passage to
22,67±1,55 % (p ≤ 0,05) during cultivation.
Keywords: mesenchimal stem cells, morphometric analysis,
viability, apoptosis

Повний текст:



Achille, V., Mantelli, M., Arrigo, G., Novara, F., Avanzini, M. A., Bernardo,

M. E., Zuffardi, O., Barosi, G., Zecca, M., Maccario, R. (2011). Cell-cycle phases and

genetic profile of bone marrow-derived mesenchymal stromal cells expanded in vitro

from healthy donors. J. Cell Biochem., 112 (7), 1817−1821. doi: 10.1002/jcb.23100.

Alfaifi, M., Eom, Y. W., Newsome, P. N., Baik, S. K. (2018). Mesenchymal

stromal cell therapy for liver diseases. J. Hepatol., 68 (6), 1272−1285. doi:

1016/j.jhep.2018.01.030. Epub 2018 Feb

Bonab, M. M., Alimoghaddam, K., Talebian, F., Ghaffari, S. H.,

Ghavamzadeh, A., Nikbin, B. (2006). Aging of mesenchymal stem cell in vitro. BMC

Cell Biol., 7, 14. PMID:16529651; 2121-7-14.

Bortolotti, F., Ukovich, L., Razban, V., Martinelli, V., Ruozi, G., Pelos, B.,

Dore, F., Giacca, M., Zacchigna, S. (2015). In Vivo Therapeutic Potential of

Mesenchymal Stromal Cells Depends on the Source and the Isolation Procedure.

Stem Cell Reports, 4, 332–339.

Boward, B., Wu, T., Dalton, S. (2016). Control of cell fate through cell

cycle and pluripotency networks. Stem Cells, 34 (6), 1427–1436. doi:


Christ, B., Bruckner, S., Winkler, S. (2015). The therapeutic promise of

mesenchymal stem cells for liver restoration. Trends Mol Med., 21, 673–768.

Dmitrieva, R., Minullina, I. R., Bilibina, A. A., Tarasova, O. V., Anisimov, S.

V., Zaritskey, A. Y. (2012). Bone marrow- and subcutaneous adipose tissue-derived

mesenchymal stem cells Differences and similarities. Cell Cycle, 11 (2), 377−383.

El Baz, H., Demerdash, Z., Kamel, M., Atta, S., Salah, F., Hassan, S.

(2018). Transplant of hepatocytes, undifferentiated mesenchymal stem cells, and in

vitro hepatocyte-differentiated mesenchymal stem cells in a chronic liver failure

experimental model: a comparative study. Exp. Clin. Transplant., 16, 81–89.

Grzesiak, J., Marycz, K., Czogala, J., Wrzeszcz, K., Nicpon, J. (2011).

Comparison of behavior, morphology and morphometry of equine and canine

adipose derived mesenchymal stem cells in culture. Int. J. Morphol., 29 (3),


Katsube, Y., Hirose, M., Nakamura, C., Ohgushi, H. (2008). Correlation

between proliferative activity and cellular thickness of human mesenchymal stem

cells. Biochem. Biophys. Res. Commun., 368 (2), 256−260. doi:

1016/j.bbrc.2008.01.051. Epub 2008 Jan 22.

Maciel, B., Rebelatto, C., Brofman, P., Brito, H. et al. (2014). Morphology

and morphometry of feline bone marrow-derived mesenchymal stem cells in culture.

Pesq. Vet. Bras., 34 (11), 1127−1134.

Soufi, A., Dalton, S. (2016). Cycling through developmental decisions: how

cell cycle dynamics control pluripotency, differentiation and reprogramming.

Development, 143 (23), 4301−4311.

Volk, S., Theoret, C. (2013). Translating stem cell therapies: the role of

companion animals in regenerative medicine. Wound Repair Regen., 3, 382–394.

Kladnitska, L. V., Mazurkevich, A. J., Kovpak, V. V. (2014). Otrymannya

adhezyvnoyi fraktsiyi mononuklearnykh klityn kistkovoho mozku liniynykh myshey C

BL/6 za riznykh umov vydilennya pervynnoho materialu ta kulʹtyvuvannya u

seredovyshchi RPMI [Receipt of adhesive fraction of mononuclear cells of bone

marrow of linear mice C 57BL/6 under different conditions of primary material

isolation and cultivation in RPMI medium]. Bulletin of the Sumy National Agrarian

University: Series «Veterinary Medicine», 1 (34), 19–22.

Метрики статей

Завантаження метрик ...

Metrics powered by PLOS ALM


  • Поки немає зовнішніх посилань.