THE INFLUENCE OF ALLOGENEIC BONE MARROW DERIVED MESENCHYMAL STEM CELLS ON INDICATORS OF FUNCTIONAL STATE OF IMMUNE ORGANS IN MICE C57BL/6



L. KLADNYTSKA, A. MAZURKEVYCH, S. VELYCHKO, Y. KHARKEVYCH, V. VELYCHKO

Анотація


The studies were conducted on 2-3-months-old males of
mice weighing 20-24 g. Оur work was to study the functional state of the
organs of the immune system of C57Bl/6 mice after introduction of allogeneic
MSCs of bone marrow origin. Obtaining and cultivating of MSCs were carried
out in a sterile laminar box with compliance of conditions of asepsis and
antiseptics. C57Bl/6 mice bone marrow aspirate cultured in a CO2 incubator at
37 оC and 5 % CO2 in DMEM with 10-15 % of fetal bovine serum, 1 % of
antibiotic-antimycotic solution (Sigma-Aldrich, USA). The following groups of
animals were formed: 1 group – intact (control group); 2 group - animals, to
whom 0.5 ml of 0.9 % NaCl solution (placebo) were injected into the caudal
vein; 3 group – animals, to whom 104 of allogeneic MSCs in 0.5 ml of
phosphate buffer solution were injected into the caudal vein. The weight
index, cellularity of thymus and spleen in C57Bl/6 mice investigated after the
introduction of MSCs. The administration of allogenic mesenchymal stem cells
of the bone marrow origin affects on the central and peripheral organs of the
immune system. Administration of allogenic mesenchymal stem cells cause a
significant increase in the content of lymphoid cells in the thymus at 7 and 18
days by 72 and 39 %, respectively (p < 0.01, p < 0.05) compared to the
control. Administration of allogenic mesenchymal stem cells cause a
significant increase in the weight index of the spleen and its cellularity at the 7
and 18 days of the immune response by 26 and 17 %, respectively (p < 0.01, p
<0.05) compared to the control. the weight index of the spleen and it cellularity
a significant increase at the 7 and 18 days of the immune response by 26 and
17 %, respectively (p < 0.05) compared to the control after administration of
allogenic mesenchymal stem cells.
Keywords: mice, weight index, cellularity,
thymus, spleen,
allogenic mesenchymal stem cells


Повний текст:

PDF

Посилання


Aggarwal, S., Pittenger, M. G. (2005). Human mesenchymal stem cells

modulate allogeneic immune cell responses. Blood, 105, 1815–1822.

Bai, L., Lennon, D. P., Eaton, V. et al. (2009). Human bone marrow-

derived mesenchymal stem cells induce Th2-polarized immune response and

promote endogenous repair in animal models of multiple sclerosis. Glia, 57, 1192–

Bartholomew, A., Sturgeon, C., Siatskas, M. et al. (2002). Mesenchymal

stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in

vivo. Exp. Hematol., 30, 42–48.

Comoli, P., Ginevri, F., Maccario, R. et al. (2008). Human mesenchymal

stem cells inhibit antibody production induced in vitro by allostimutation. Nephrol.

Dial. Transplant., 23, 1196–1202.

Corcione, A., Benvenuto, F., Ferretti, E. et al. (2006). Human

mesenchymal stem cells modulate B-cell functions. Blood, 107, 367–372.

DelaRosa, O., Lombardo, E. (2010). Modulation of adult mesenchymal

stem cells activity by toll-like receptors: implications on therapeutic potential.

Mediators Inflamm., 2010, 865−601.

Deng, W., Han, Q., Liao, L. et al. (2005). Effects of allogeneic bone

marrow derived mesenchymal stem cells on T and B lymphocytes from BXSB mice.

DNA Cell Biol., 24, 458–463.

Di Nicola, M., Carlo-Stella, C., Magni, M. et al. (2002). Human bone

marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or

nonspecific mitogenic stimuli. Blood, 99, 3838–3843.

Djouad, F., Fritz, V., Apparailly, F. et al. (2005). Reversal of the

immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor

alpha in collagen-induced arthritis. Arthr. and Rheum., 52, 1595–1603.

Spaggiari, G. M., Capobianco, A., Becchetti, S. (2006). Mesenchymal

stem cell–natural killer cell interactions: evidence that activated NK-cells are capable

of killing MSCs, whereas MSCs can inhibit IL-2–induced NK-cell proliferation. Blood,

(4), 1484–1490.

Huang, Y., Johnston, P., Zakari, A. et al. (2009). Kidney-derived stromal

cells modulate dendritic and T cell responses. J. Am. Soc. Nephrol., 20, 831–841.

Gordon, J., Manley, N. R. (2011). Mechanisms of thymus organogenesis

and morphogenesis. Development, 138 (18), 3865–3878. doi: 10.1242/dev.059998

Kladnytska, L. V., Nikulina, V. V., Garmanchuk, L. V., Mazurkevych, A. Y.,

Kovpak, V. V., Nikolaienko, T. V., Shelest, D. V., Dzhus, O. I., Skachkova, O. V.,

Stupak, Y. A., Dasyukevich, O. I. (2014). Influence allogeneic mesenchymal stem

cells on the tumour growth parameters and metastatic potential in the transplantable

carcinoma lung Lewis. Journal of Animal and Veterinary Sciences, 1 (1), 1−5.

Le Blanc, K., Rasmusson, I., Gotherstrom, C. et al. (2004). Mesenchymal

stem cells inhibit the expression of CD25 (interleukin-2 receptor) and CD38 on

phytohaemagglutinin-activated lymphocytes. Scand. J. Immunol., 60, 307–315.

Mazurkevych, A., Malyuk, M., Bezdieniezhnykh, N., Starodub, L.,

Kharkevych, Y., Jakubczak, A., Gryzinska M. (2017). Immunophenotypic

characteristics and karyotype analysis of bone marrow-derived mesenchymal stem

cells of rabbits during in vitro cultivation. Polish Journal of Veterinary Sciences, 20

(4), 687–695.

Mazurkevych, A., Kladnytska, L. V., Kovpak V. V. (2013). Features conditions

selection and cultivation mouse bone marrow adhezive fraction mononuklear cells.

Bulletin of the Taras Shevchenko National University of Kyiv, 2 (64), 41−43.

Rafei, M., Hsieh, J., Fortier, S. et al. (2008). Mesenchymal stromal cell-

derived CCL2 suppresses plasma cell immunoglobulin production via STAT3

inactivation and PAX5 induction. Blood, 112, 4991–4998.

Rasmusson, I., Le Blanc, K., Sundberg, B., Ringden, O. (2007).

Mesenchymal stem cells stimulate antibody secretion in human B cells. Scand. J.

Immunol., 65, 336–343.

Rasmusson, I., Ringden, O., Sundberg, B., Le Blanc, K. (2003). Mesenchymal

stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T

lymphocytes or natural killer cells. Transplantation, 76, 1208–1213.

Grischenko, V. А., Tomchuk, V. А. (2013). Imunomodulyuyuchi vlastyvosti

liposom na osnovi fosfolipidiv moloka pry imunodefitsitnomu stani orhanizmu tvaryn

[Immunomodulatory properties of liposomes on the basis of milk phospholipids at the

immunodeficiency state of the organism of animals]. Scientific Bulletin of the National

university of life and environmental sciences of Ukraine, 188 (4), 107−115.


Метрики статей

Завантаження метрик ...

Metrics powered by PLOS ALM

Посилання

  • Поки немає зовнішніх посилань.