The use of gadolinium orthovanadate nanoparticles for the correction of reproductive ability in boars Under oxidative stress

V. I. Koshevoy, S. V. Naumenko, V. K. Klochkov, S. L. Yefimova


Abstract. The search for effective and safe means of correcting male hypofertility is an urgent problem of modern reproductology. Researchers have proved the possibility of the use of nanoparticles based on oxides of rare earth elements for the treatment of disorders of male reproductive function. We investigated the effectiveness of the use of gadolinium orthovanadate nanoparticles activated by europium the size of which was 25×8 nm in the dose of 0,0125 mg per kg of live weight to correct reproductive ability decrease in boars under oxidative stress. After 14 days of hydrosol nanoparticles administration we established experimentally the dynamics of the content markers of oxidative stress and stable metabolites in the Nitrogen oxide cycle, and also determined the changes in sperm quality indicators. Thus, diene conjugates concentration in the blood serum of boars on the 15th day tended to decrease, and on the 30th day of the study was lower by 9,4 % compared to the group of animals before administration. At the same time the amount of thiobarbiturate-active products decreased on the 15th day of the study by 24,7 %, and on the 30th day – by 48,2 %, which indicates the normalization of oxidative processes in males. We noted positive changes in the system of the Nitrogen oxide cycle, the content of stable metabolites on the 15th day was lower than in animals before administration by 25,2 %, and on the 30th day – by 42,6 %. At the same time, we observed an improvement in the quality of boar sperm, especially motility and the number of motile sperm in the ejaculate increased by 42,9 % and 57,1 % on the 60th day and by 95,2 % and 1,48 times on the 90th the day of the study, respectively. In this case, the volume of ejaculate, sperm concentration and sperm content with morphological anomalies with the introduction of nanoparticles normalized and almost reached the values of the control group. The researchers are interested in further elucidating the effect of correction of reduced reproductive ability in boars under oxidative stress with gadolinium orthovanadate nanoparticles on hormonal background and the state of enzymatic and non-enzymatic systems of antioxidant protection.

Keywords: sperm quality, prooxidant-antioxidant system, peroxidation, oxidative stress markers, the Nitrogen oxide cycle, nanomaterials

Повний текст:

PDF (English)


Agarwal, A., Rana, M., Qui, E., AlBunni, H., Bui, A. D., & Henkel, R. (2018). Role of oxidative stress, infection and inflammation in male infertility. Andrologia, 50(11:e13126).

Barik, G., Chaturvedula, L. & Bobby, Z. (2019). Role of oxidative stress and antioxidants in male infertility: An interventional study. Journal of Human Reproductive Sciences, 12(3):204.

Belkina, I. O., Smolenko, N. P., Klochkov, V. K., Malukin, Yu. V., Chistyakova, E. E., Karpenko, N. A., & Karachentsev, Yu. I. (2017). The assessment of gadolinium orthovanadate nanoparticles value for neonatally-induced reproductive disease in male rats. International Journal of Physiology and Pathophysiology, 8(4):299–307.

Bisht, S., Faiq, M., Tolahunase, M., & Dada, R. (2017). Oxidative stress and male infertility. Nature Reviews Urology, 14(8):470–485.

Domoslawska, A., Zdunczyk, S., Franczyk, M., Kankofer, M., & Janowski, T. (2018). Selenium and vitamin E supplementation enhances the antioxidant status of spermatozoa and improves semen quality in male dogs with lowered fertility. Andrologia, 50(6:e13023).

Fedorova, T. N., Korshunova, T. S. & Larskiy, E. G. (1983). Reaktsii s tiobarbiturovoy kislotoy dlya opredeleniya malonovogo dial’degida krovi metodom flyuorimetrii [Reactions with tiobarbituric acid for determination of blood malondialdehyde by fluorimetry]. Laboratornoe delo, 3:25–28. ( in Russian).

Golikov, P. P. (2004). Oksid azota v klinike neotlozhnyh zabolevanij [Nitric oxide in an emergency clinic]. Moskva. (in Russian).

Karpenko, N. O., Korenieva, Ye. M., Chystiakova, E. Ye., Smolienko, N. P., Bielkina, I. O., Kustova, S. P., Boiko, M. O., Kavok, N. S., Medvedovska, N. V., & Klochkov, V. K. (2020). Doslidzhennia prostatoprotektornoi ta spermomodeliuiuchoi dii nanochastynok na osnovi oksydiv ridkisnozemelnykh elementiv [The studying of the prostateprotective and spermmodulating effects of the nanoparticles based on rare-earth elements oxides]. Problemy Endokrynnoi Patolohii, 3:109–118 (in Ukrainian).

Kim, A. D., Zhang, R., Kang, K. A., You, H. J., Kang, K. G., & Hyun, J. W. (2011). Jeju ground water containing vanadium enhances antioxidant systems in human liver cells. Biological Trace Element Research, 147(1-3):16–24.

Koreneva, E. M., Karpenko, N. A., Smolenko, N. P., Belkina, I. O., Chistyakova, E. Ye., Selyukova, N. Y., Karachentsev, Yu. I., Klochkov, V. K., Yefimova, S. L., Kavok, N. S. (2016). Vplyv nanochastynok ortovanadatu hadoliniiu ta dioksydu tseriiu na spermohramu doroslykh samtsiv shchuriv iz neonatalno indukovanymy rozladamy reproduktyvnoi funktsii [The influence of gadolinium orthovanadate and cerium dioxide nanoparticles on spermogram of adult male rats with neonatal induced disorders of reproductive function]. Problemy Endokrynnoi Patolohii, 1:48-55 (in Ukrainian).

Koshevoy, V. I., & Naumenko, S. V. (2020). The impact of oxidative stress in reducing the reproductive capacity of the boar-inseminators. Veterinary Science, Technologies of Animal Husbandry and Nature Management, 5:246–249.

Liman, N., & Alan, E. (2016). Region-specific localization of NOS isoforms and NADPH-diaphorase activity in the testicular and excurrent duct systems of adult domestic cats (Felis catus). Microscopy Research and Technique, 79(3):192–208.

Mayorga-Torres, B. J. M., Camargo, M., Cadavid, A. P., du Plessis, S. S., & Cardona Maya, W. D. (2016). Are oxidative stress markers associated with unexplained male infertility? Andrologia, 49(5:e12659).

Otasevic, V., Stancic, A., Korac, A., Jankovic, A., & Korac, B. (2020). Reactive oxygen, nitrogen, and sulfur species in human male fertility: A crossroad of cellular signaling and pathology. BioFactors, 46(2):206–219.

Palani, A. F. (2018). Effect of serum antioxidant levels on sperm function in infertile male. Middle East Fertility Society Journal, 23(1):19–22.

Scarlata, E., & O’Flaherty, C. (2020). Antioxidant enzymes and male fertility: lessons from knockout models. Antioxidants & Redox Signaling, 32(8):569–580.

Skliarov, P. M., Fedorenko, S. Y., Naumenko, S. V., Onischenko, O. V., & Holda, K. O. (2020). Retinol deficiency in animals: etiopathogenesis and consequences. Regulatory Mechanisms in Biosystems, 11(2):162–169.

Stal’naya, N. O. & Garnishvili, T. G. (1977). Sovremennye metody v biokhimii [Modern methods in biochemistry]. Moskva. (in Russian).

Wright, C., Milne, S., & Leeson, H. (2014). Sperm DNA damage caused by oxidative stress: modifiable clinical, lifestyle and nutritional factors in male infertility. Reproductive Biomedicine Online, 28(6):684–703.

Yablonskyi, V. A. (2005). Biotekhnolohiia vidtvorennia tvaryn [Biotechnology of animal reproduction]. Kiev. (in Ukrainian).

Zarubina, I. V., Lukk, M. V., & Shabanov, P. D. (2012). Antihypoxic and antioxidant effects of exogenous succinic acid and aminothiol succinate-containing antihypoxants. Bulletin of Experimental Biology and Medicine, 153(3):336–339.

Метрики статей

Завантаження метрик ...

Metrics powered by PLOS ALM


  • Поки немає зовнішніх посилань.