Approximation of growth indicators and analysis of individual growth curves by linear dimensions of tubular bones in chickens of meat production direction during postnatal period of ontogenesis
Анотація
To study the growth dynamics of poultry body weight, classical growth models of Gompertz were used, in particular for the growth and development of birds, Bertalanffy, Richards and hyperbolastic models to quantify the growth processes of biological objects.
The research material was tubular bones of the sternum (humerus, ulna and radius) and pelvic (femurl, tibia and tarsal-metatarsal) limbs of poultry meat production (chickens-broiler and laying hens of the parent flock of crossbred broilers Cobb-500) of different age groups. postnatal period of ontogenesis.
To solve this goal, to obtain growth curves and identify special points (extrema, inflections, etc.) to build a picture of the overall development of the body as a whole and individual limb bones, a corresponding regression analysis of experimental data based on known growth models. The most biologically suitable growth models for describing the growth dynamics of the body as a whole and individual studied bones were determined.
The absence of a unified growth model of linear parameters of different tubular bones of meat-producing chickens in the postnatal period of ontogenesis was established. Hence the need for a clear selection of growth models taking into account age, species, breed, housing conditions and feeding of poultry.
The growth model that best describes the body weight dynamics of chickens-broiler is the hyperbolastic growth model of the H3 type, and the laying hens of the parent broiler herd are the Brody growth model.
Key words: growth models, tubular bones, body weight, meat-producing chickens.
Повний текст:
PDF (English)Посилання
Ahmadi, H., & Golian, А. (2008). Non-linear hyperbolastic growth models for describing growth curve in classical strain of broiler chicken. Research Journal of Biological Siences, 3(11), 1300-1304. doi: rjbsci.2008.1300.1304
Arando, A., González-Ariza, A., Lupi, T. M., Nogales, S., León, J. M., & Navas-González, F. J. (2021). Comparison of non-linear models to describe the growth in the Andalusian turkey breed. Italian Journal of Animal Science, 20(1), 1156-1167. doi: 10.1080/1828051X.2021.1950054
Blom, J., & Clas, L. (2004). A comparative study of growth, skeletal development and eggshell composition in some species of birds. Journal of Zoology, 262(4), 361-369. doi: https://doi.org/10.1017/S0952836903004746
Cetin, M., Sengul, T., Sogut, B., & Yurtseven, S (2007). Comparison of growth models of male and female Partridges. Journal of Biological Science, 7(6), 964-968. doi: 10.3923/jbs.2007.964.968
Cooney, C. R., Seddon, N., & Tobias, J. A. (2016). Widespread correlations between climatic niche evolution and species diversification in birds. Journal Animal Ecology, 85(4), 869-78. doi: 10.1111/1365-2656.12530
Dovhan, Y. P., Hladkykh, V. Yu., & Shevchuk, Yu. H. (2009). Zastosuvannia metodu matematychnoho modeliuvannia z metoiu prohnozuvannia stanu miazovo-venoznoi pompy homilky [Application of the method of mathematical modeling in order to predict the state of the muscle-venous pump of the lower leg]. Visnyk morfolohii, 15, 184-188
Foutz, T. L., Griffin, A. K., Halper, J. T., & Rowland G. N. (2007). Effects of increased physical activity on juvenile avian bone. Transactions of the ASABE, 50(1), 213-219. doi: 10.13031/2013.22402
García-Aznar, J. M., Rueberg, T. & Doblare, M. (2005). A bone remodelling model coupling microdamage growth and repair by 3D BMU-activity. Biomechanics and Modeling in Mechanobiology, 4(2–3), 67-147/ doi: 10.1007/s10237-005-0067-x.
Griebeler, E. M., Klein, N., & Sander, P. M. (2013). Aging, maturation and growth of sauropodomorph dinosaurs as deduced from growth curves using long bone histological data: An assessment of methodological constraints and solutions. Plos One, 8(6), e67012. doi: 10.1371/journal.pone.0067012
Huff, G. R., Huff, W. E., Rath, N. C., Balog, J. M., Anthony, N., & Nestor, K. (2006). Stress-induced Colibacillosis and turkey osteomyelitis complex in turkeys selected for increased body weight. Poultry Science, 85(2), 266-272. doi: 10.1093/ps/85.2.266
Jones,T. M., Benson, T. J., & Ward, M. P. (2019). Does the size and developmental stage of traits at fledging reflect juvenile flight ability among songbirds? Functional Ecology, 34(4), 799-810. doi: 10.1111/1365-2435.13513
Kaplan, S., Narinc, D., & Gurcan, E. K. (2016). Genetic parameter estimates of weekly body weight and Richard's growth curve in Japanese quail. Europian Poultry Science, 80, 1-10 doi: 10.1399/eps.2016.165
Moraes, V. M. B., Malheiros, R. D., Furlan, R. L. Bruno, L. D. G., Malheiros, E. B., & Macari, M. (2007). Effect of environmental temperature during the first week of brooding on broiler chick body weight, viscera and bone development. Brazil Journal Poultry Science, 4 (1), 1-8. doi: 10.1590/S1516-635X2002000100003
Pigot, A. L., Sheard, C., Miller, E. T., Bregman, T. P., Freeman, B. G., Roll, U., Seddon, N., Trisos, C. H., Weeks, B. C., & Tobias, J. A. (2020). Macroevolutionary convergence connects morphological form to ecological function in birds. Nature Ecology & Evolution, 4, 230-239. doi: 10.1038/s41559-019-1070-4
Pinhasi, R., Shaw, P., White, B., & Ogden, A. R. (2009). Morbidity, rickets and long-bone growth in post-medieval Britain a cross-population analysis. Annals of Human Biology, 33(3), 372-389. doi: 10.1080/03014460600707503
Porter, T., Kebreab, E., Darmani, K. H., Lopez, S., Strathe A. B., & France, J. (2010). Flexible alternatives to the Gompertz equation for describing growth with age in turkey hens. Poultry Science, 89(2), 371-378. doi: 10.3382/ps.2009-00141
Ramos, S. B., Caetano, S. L., Savegnago, R. P., Nunes, B. N., Ramos, A. A., & Munari, D. P. (2013). Growth curves for ostriches (Struthio camelus) in a Brazilian population. Poultry Science, 92(1), 277–282. doi: 10.3382/ps.2012-02380
Remeš, V., Matysioková, B., & Vrána, J. (2020). Adaptation and constraint shape the evolution of growth patterns in passerine birds across the globe. Frontiers in Zoology, 17, 29. doi: 10.1186/s12983-020-00377-7
Tabatabai, M. A., Bursac, Z., Wiliams, D. K., & Singh, K. P. (2007). Hyperbolastic survival model. Theoretical Biology and Medical Modelling, 4 (40), 325-335. doi: 10.1186/1742-4682-4-40
Tjørve, K. M. C., & Tjørve, E. (2017). The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family. Plos One, 12(6), e0178691. doi: 10.1371/journal.pone.0178691
Tjørve, K. M. C., García-Peña, G. E., & Székely, T. (2009). Chick growth rates in charadriiformes: Comparative analyses of breeding climate, development mode and parental care. Journal of Avian Biology, 40 (5), 553-558. doi: 10.1111/j.1600-048X.2009.04661.x
Tjørve, K., & Tjørve, E. (2010). Shapes and functions of bird-growth models: How to characterize chick postnatal growth. Zoology, 113(6), 326-333. doi: 10.1016/j.zool.2010.05.003
Tjørve, E., & Tjørve, K. M. C. (2010). A unified approach to the richards-model family for use in growth analyses: Why we need only two model forms. Journal of Theoretical Biology, 267(3), 417-425. doi:10.1016/j.jtbi.2010.09.008
Yan, J., & Zhang, Z. (2020). Post-hatching gr owth of the limbs in an altricial bird species. Veterinary Medicine and Science, 7(1), 210-218. doi:10.1002/vms3.357
Zheng, N., Cadigan, N., & Morgan, M. J. (2020). A spatiotemporal Richards-Schnute growth model and its estimation when data are collected through length-stratified sampling. Environmental and Ecological Statistics, 27, 415-446. doi: 10.1007/s10651-020-00450-8
Метрики статей
Metrics powered by PLOS ALM
Посилання
- Поки немає зовнішніх посилань.