Physics and chemical features of the vanadium sulfamate soluble, manganese, chromium and other metals sulfamates

Authors

  • V. Maksin National University of Life and Environmental Sciences of Ukraine image/svg+xml
  • O. Standrytchuk National University of Life and Environmental Sciences of Ukraine image/svg+xml
  • O. Lytovchenko NP NUBiP of Ukraine "Nizhyn Agrotechnical College" , Ніжинський агротехнічний коледж

DOI:

https://doi.org/10.31548/bio2019.05.013

Keywords:

sulfamic acid, sulfamates, solubility of sulfamates, Gibbs energy, sulfamate ion, zwitterionic structure of sulfamate ion, ion radius

Abstract

Dependence of sulfamic acid salts solvability in  water - СS (in  gr of salt/100 gr Н2O) with the general chemical formula Ме(SO3NH2)n, where, +n is one-, two- and three-charge cations of metal, and - n is value of charge, was researched. Also specific aspects of distribution of salts Ме(SO3NH2)n according to calculated size of  Gibbs free energy – ∆GS, from the radius length – r+n(in nm) of  sulfamate formative metal cation were examined.     

      Using graphic methods and methods of mathematical analysis of the functions СS=f(r+n) and ∆GS=f(r+n) correlation of special points of these functions with fundamental physical and chemical constants was found. It was calculated the size of sulfamate-ions radius with cvitter-ion (r)+H2NSO3- = 254,932 ± 0,001 pm, and with  open (r-і)NH2SO3- = 255,965 ± 0,005 pm structure. Also estimated values of СS for sulfamates formed by two- and three-charge cations of  Vanadium, Manganese and Chromium were clarified.

References

Cupery M.E. (1938). Sulfamic acid - a new industrial chemical. Ind. Eng. Chem, 30 (6), 627-631. https://doi.org/10.1021/ie50342a005

Standritchuk O.Z., Maksin V.I., Zapolsky A.K. (1989). Solubility of sulfamic acid in water. Journal of General Chemistry, 60 (122)/2, 253-258.

Sulfamic acid. Available at: https://en.wikipedia.org/wiki/Sulfamic_acid.

Patron M. (1955). Chimie et applications industrielles de lʼacide sulfamique et de ses sels. Lʼind. Chim., 42/457, 237-243.

Odehnal M. (1955). O někturŷch amidosulfonatéch těżkych kovu. Chem. Listy, 49/10, 1571-1575.

Levin A.I., Zhang Go-hyun. (1960). Electric refining from sulfate electrolytes. Journal of Applied Chemistry, Vol. 33/3, 667-674.

Mustaev A.K., Yakovenko R.T. (1963). On the sulfamates of rare earth elements. Proceedings of the Academy of Sciences of the Kyrgyz SSR, Series: Natural Sciences, 5/4, 5-8.

Zimmerman M., Giesbrecht E. (1973). De lʼacide sulfamique et de ses lanthanide sels. Ann. Acad. Brasil ciens.,45/1, 99-112.

Krasovskaya T.A., Pirkes S.B., Vasilyeva S.V. (1986). Synthesis of REE sulfamates and study of some of their properties. Journal of Inorganic Chemistry, 31/ 3, 617-624.

Standritchuk O.Z., Maksin V.I., Zapolsky A.K. (1989). Thermodynamic aspects of solubility of sulfamates. Journal of Physical Chemistry, 63/9, 2332-2339.

Maksin V.I., Standritchuk O.Z. (2006). The solubility of copper sulfates and metals of the iron subgroup in water. Agrarian science and education, 7/5-6, 22-29.

Maksin V.I., Standritchuk O.Z. (2007). Solubility diagrams for nickel-water sulfate systems, cobalt-water sulfate systems. Journal of Applied Chemistry, 80/7, 2267-2274. https://doi.org/10.1134/S1070427207070063

Maksin V.I., Standritchuk O.Z., Balakireva A.D. (2013). Mercurymetric determination of chloride and bromide ions in aqueous solutions using sulfamate as an indicator. Water chemistry and technology, 35/6, 459-469. https://doi.org/10.3103/S1063455X13060039

Grey L.W. (1981). Rapid dissolution of plutonium metal in sulfamic acid followed by conversion to a nitric acid medium. Nucl. Technol, 52/1, 66-72. https://doi.org/10.13182/NT81-A32690

Goronovsky I.T., Nazarenko Yu. P., Nekryach E.F. (1987). A short guide to chemistry: A guide. Kiev: Scientific Opinion, 830.

Kirgintsev A.N., Trushnikova L.N., Lavrenteva V.G. (1972). Solubility of Inorganic Substances in Water: A Handbook. Leningrad: Chemistry, 248.

Standritchuk O.Z., Maksin V.I., Zapolsky A.K. (1983). Physicochemical properties of solutions, melts and crystals of sulfamic acid and its salts. Abstracts of the reports of the VI All-Union Meeting on Physicochemical Methods of Analysis (Kiev, November 22-24, 1983). Moscow: Science, 86-87.

Yoshikubo, K., Suzuki, M. (2000). Sulfamic Acid and Sulfamates. Kirk-Othmer Encyclopedia of Chemical Technology.

https://doi.org/10.1002/0471238961.1921120625151908.a01

Standritchuk O., Maksin V. (2018). Regularities of distribution of melting and boiling points of simple substances and chemical compounds and their relation with other physicochemical parameters. Bulletin of the Kyiv National University. T.G. Shevchenko, series: Chemistry, 55/1, 9-15.

https://doi.org/10.17721/1728-2209.2018.1(55).2

Mohr P. J., Newell D. B., and Taylor B. N. (2014). Recommended values of the fundamental physics and-chemistry constants. NIST SP 959 2015 (Aug 4, 2015). Available at: https://arxiv.org/abs/1507.07956v1

https://doi.org/10.6028/NIST.SP.961r2015

D. Johnson. (1985). Thermodynamic aspects of inorganic chemistry (Translated from English by J. H. Greenberg). Moscow: Peace, 326.

Nash G.A., Skinner H.A., Zordan T.A., Hepler L.G. (1968). Heat of formation of sulfamic acid . J. Chem. and Eng. Data, 13/2, 271-272.

https://doi.org/10.1021/je60037a041

Maksin V.I., Standritchuk O.Z. (1989). Dissolution and crystallization of sulfamic acid. Journal of Applied Chemistry, 62/10, 2267-2274.

Maurey J.A., Wolff J. (1963). The partial molar volume of OCN-, BF4-, SeCN-, ReO4-, SO3- and SO3NH2-. J. Inorg. and Nucl. Chem., 25/3, 312-314. https://doi.org/10.1016/0022-1902(63)80062-7

Standritchuk O.Z., Maksin V.I., Zapolsky A.K. (1991). Partial molar volumes and thermodynamic radii of zwitter ions +H3NSO3 and +H3NCH2CO2. Ukrainian Chemical Journal, 57/5, 458-462.

Maksin V.I., Standritchuk O.Z. (2013). An alternative view of the processes of metabolism with the study of its parameters in warm-blooded species. Bioresources and environmental management, 5/5-6, 24-37.

Shannon R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr, 32, 751-767. Bibcode:1976AcCrA..32..751S.

https://doi.org/10.1107/S0567739476001551

Ionic radius. Electronic resource. Available at: https://en.wikipedia.org/wiki/Ionic_radius

Published

2019-12-20

Issue

Section

Chemistry