Genotoxic effect of Pseudomonas Syringae Pv. Atrofaciens Lipopolysaccharide In Allium Cepa-test
DOI:
https://doi.org/10.31548/biologiya2019.03.044Keywords:
phytopathogenic bacteria, lipopolysaccharide, mutagenic activity, mitotic indexAbstract
The genotoxic activity of microorganisms and their biopolymers is closely monitored due to the correlation between microorganism instability of macroorganisms and carcinogenesis. Information about the mutagenic activity of phytopathogenic bacteria and their biopolymers is extremely limited, which makes the study of the genotoxic action of lipopolysaccharides of the widespread species P. syringae pv. atrofaciens urgent task. Determination of genotoxic activity of lipopolysaccharides obtained by extraction with sodium chloride solution of the causative agent of basal bacteriosis of wheat P. syringae pv. atrofaciens were performed in Allium cepa-test. It has been established that lipopolysaccharides of phytopathogenic bacteria of the species P. syringae pv. atrofaciens suppress mitotic activity in the cells of the A. cepa apical meristem and, at a dose of 5.0 mg / ml, exhibit a destructive effect on the genetic apparatus of the test object.
References
Parsonnet, J. (1995) Bacterial infection as a cause of cancer. Environmental Health Perspectives, 103(8), 263-268.
https://doi.org/10.1289/ehp.95103s8263
Masrour-Roudsari, J. & Ebrahimpour, S. (2017) Casual role of infectious agents in cancer: An overview. Caspian J. Intern. Med, 8(3), 153-158.
Kovalchuk, O., Walz P. & Kovalchuk, I. (2014) Does bacterial infection cause genome instability and cancer in the host cell? Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 761, 1-14.
https://doi.org/10.1016/j.mrfmmm.2014.01.004
Koturbash, I., Thomas, J.E., Kovalchuk, O. & Kovalchuk, I. (2009) Heat-killed bacteria induce genome instability in mouse small intestine, liver and spleen tissues. Cell Cycle, 8(12), 1935-1939.
https://doi.org/10.4161/cc.8.12.8797
Luderitz, O., Freudenberg, M.A., Galanos, C. & Lehmann, V. (1982) Lipopolysaccharides of Gram-negative bacteria. Current Topics in Membrane Transport, 17, 79-134.
https://doi.org/10.1016/S0070-2161(08)60309-3
Yamada, H., Arai, T., Endo, N., Yamashita K., Fukuda, K. &
Sasada, M. (2006) LPS-induced ROS generation and changes in glutathione level and their relation to the maturation of human monocyte-derived dendritic cells. Life Sciences, 78, 926-933.
https://doi.org/10.1016/j.lfs.2005.05.106
Abd-Allah, A.R.A. (2006) Alpha-lipoic acid counteracts the promoted oxidative DNA damage in the liver of septic rats. Saudi Pharmaceutical Journal, 14(2), 89-99.
Suliman, H.B., Carraway, M.S. & Piantadosi, C.A. (2003) Postlipopolysaccharide Oxidative Damage of Mitochondrial DNA. American J Respiratory аnd Critical Care Medicine, 167, 570-579.
https://doi.org/10.1164/rccm.200206-518OC
Sewerynek, E., Ortiz, G.G., Reiter, R.J., Pablos, M.I., Melchiorri, D. & Daniels, W.M. (1996) Lipopolysaccharide-induced DNA damage is greatly reduced in rats treated with the pineal hormone melatonin. Mol Cell Endocrinol, 117(2), 183-188.
https://doi.org/10.1016/0303-7207(95)03742-X
Bohdan, Yu. M., Butsenko, L. M., Pasichnyk, L. A. & Hvozdiak R. I. (2008). Antymutahenna aktyvnist lipopolitsukrydu Pseudomonas syringae pv. atrofaciens 9400 [The antimutagenic activity of the Pseudomonas syringae pv lipopolysaccharide. atrofaciens 9400] Антимутагенна активність ліпополіцукриду Pseudomonas syringae pv. atrofaciens 9400. Naukovyi visnyk UzhU [Scientific Herald Uzh]. 24, 110-113.
Bohdan, Yu. M., Butsenko, L. M., Pasichnyk, L. A. & Hvozdiak R. I. (2010). Vplyv lipopolisakharydu Pseudomonas syringae pv. atrofaciens 9417 na protsesy mutahenezu v pro- ta eukariotnii systemakh [Effect of lipopolysaccharide Pseudomonas syringae pv. atrofaciens 9417 on mutagenesis processes in pro- and eukaryotic systems] Biopolimery i klityna [Biopolymers and Cell]. 26(1), 23-28.
https://doi.org/10.7124/bc.000140
Patyka, V. P. (Ed) (2017) Fitopatohenni bakterii. Metody doslidzhennia. [Phytopathogenic bacteria. Research methods] Vinnytsia: TOV Vindruk, 432 p.
Rank, J. (2003) The method of Allium anaphase-telophase chromosome aberration assay. Ekologija. Vilnius, 1, 38-42.
Zdorovenko, G.M., Yakovleva, L.M., Gvozdyak, R.I., Zakharova, I.Ya. & Koshechkina, L.P. (1982) Vydelenie, khimicheskiy sostav i serologicheskaya kharakteristika polisakharida Pseudomonas wieringae [The selection, chemical composition and serological characteristics of the polysaccharide Pseudomonas wieringae]. Mіkrobіologіchniy zhurnal [Microbiological journal], 44(4), 65-70.
Shylina, Yu.V., Hushcha, M.I., Molozhava, O.S. & Shevchenko, Yu.I. (2017) Imunomoduliuvalni vlastyvosti bakterialnykh lipopolisakharydiv u roslyn Arabidopsis thaliana ta yikh modyfikatsiia [Immunomodulatory properties of bacterial lipopolysaccharides in Arabidopsis thaliana plants and their modification] Fiziologiya rasteniy i genetika [Plant physiology and genetics], 49(2), 121-128.
https://doi.org/10.15407/frg2017.02.121
Dow, M., Newman, M.A. & von Roepenack E. (2000). The induction and modulation of plant defense responses by bacterial lipopolysaccharides. Annual Review of Phytopathol, 38, 241-261.
https://doi.org/10.1146/annurev.phyto.38.1.241
Zdorovenko, G.M., Zdorovenko, E.L. & Varbanets, L.D. (2007) Osobennosti sostava, stroeniya i biologicheskie svoystva lipopolisakharidov iz razlichnykh shtamov Pseudomonas syringae pv. atrofaciens [Features of the composition, structure and biological properties of lipopolysaccharides from different strains of Pseudomonas syringae pv. atrofaciens] Mikrobiologiya [Microbiology], 76(6), 774-789.
https://doi.org/10.1134/S0026261707060069
Butsenko, L. M. (2016). Vplyv lipopolisakharydiv Pseudomonas syringae pv. atrofaciens na fizioloho-biokhimichni protsesy u klitynakh Allium cepa [Effect of lipopolysaccharides of Pseudomonas syringae pv. atrofaciens on the physiological and biochemical processes in Allium cepa cells] Mіkrobіologіchniy zhurnal [Microbiological journal], 78 (5), 65-74.
Downloads
Published
Issue
Section
License
Relationship between right holders and users shall be governed by the terms of the license Creative Commons Attribution – non-commercial – Distribution On Same Conditions 4.0 international (CC BY-NC-SA 4.0):https://creativecommons.org/licenses/by-nc-sa/4.0/deed.uk
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).