Антибактеріальна активність культуральних фільтратів штамів мікроміцетів
DOI:
https://doi.org/10.31548/biologiya2020.01.042Keywords:
Keywords, micromycetes, antibacterial activity, Gram-negative bacteria, Gram-positive bacteriaAbstract
Метою роботи був скринінг серед 125 штамів мікроміцетів, виділених із різних екологічних ніш, на антибактеріальну активність. Активність вивчалася з використанням різних тест-організмів − грамнегативних та грампозитивних бактерій. Показано, що тільки 64 досліджуваних штамів проявили антибактеріальну активність. Широким спектром антибіотичної дії характеризувалися досліджувані штами роду Asp ergillus та Penicillium. Штами роду Aureobasidium та Paecilomyces, такі як A. pullulans 41, P. varioƟi 68, також проявили антибактеріальний ефект на досліджувані бактерії. Встановлено, що штами M. vinacea проявляють антибактеріальний ефект на Staphylococcus aureus 904 та E. coli 906. Більшість штамів не показали антибактеріальної дії. Найбільш перспективними для подальших досліджень є штами A. pullulans, P. varioƟi та M. vinacea, які проявляють високу антибактеріальну активність та мало досліджені.
References
Mérillon, J-M. & Ramawat, K.G. (Eds). (2017). Fungal Metabolites. Switzerland: Springer International Publishing.
https://doi.org/10.1007/978-3-319-25001-4
Rubezhniak, I.G. (2011) [Some features of secondary metabolism of microorganisms]. In: Akutina, S.P. (Eds). Selected issues of modern science. Part 3. Monography (pp. 283-310). In: Moscow: Pero. Russian.
Tsyhanenko, K.S., Zaichenko, O. M. (2004). Antybiotychni vlastyvosti deiakykh vydiv rodu Aspergillus Mich. [ Antibiotic properties of some species of genus Aspergillus Mich.] Mikrobiol. Z., 66 (4), 56-61.
Tsyhanenko, K. S. (2004). Otsinka antybiotychnoho potentsialu Aspergillus parvulus Smith. [ Evolution of biotic potential of Aspergillus parvulus Smith.] Naukovyi visnyk Chernivetskoho un-tu. Ser. Biolohiia., 194, 33-36.
Bilay, V.I. (Eds). (1982). [Methods of experimental mycology]. Kiev: Naukova Dumka.
Tsyganenko, K.S. The evaluation of antibiotic and toxigenic potential of some species micromycetes of genera Aspergillus Mich. (2005). [author's abstract]. Danilo Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Kyiv.
Tsyhanenko, K.S., Zaichenko, O.M. (2004). Kharakterystyka fitotoksychnykh vlastyvostei Aspergillus parvulus Smith. [Characteristics of phytotoxic properties of Aspergillus parvulus Smith.] Ahroekol. Z., 4, 42-45.
Svahn, K. S., Goransson, U., El-Seedi, H., Bohlin, L., Larsson, D.G. J., Olsen, B., Chryssanthou, E. (2012). Antimicrobial activity of filamentous fungi isolated from highly antibiotic-contaminated river sediment. Infection Ecology and Epidemiology, 2, l-6.
https://doi.org/10.3402/iee.v2i0.11591
Rančić , A., Soković , M., Karioti, A., Vukojević, J., Skaltsa, H. (2006). Isolation and structural elucidation of two secondary metabolites from the filamentous fungus Penicillium ochrochloron with antimicrobial activity. Environ. Toxicol. and Pharmacol., 22 (1), 80-84. https://doi.org/10.1016/j.etap.2005.12.003
Petita, K.E., Mondeguerb, F., Roquebcrtc, M.F., Biarda, J.F., Pouchusa, Y.F. (2004). Detection of griseofulvin in a marine strain of Penicillium waksmanii by ion trap mass spectrometry. J Microbiol. Methods, 58, 59-65.
https://doi.org/10.1016/j.mimet.2004.03.004
Ciharaci-Fathahm, E., Tajick-Ghanbary, M.A., Shahrokhi, N. (2014). Antimicrobial properties of Penicillium species isolated from agricultural soils of Northern Iran. Research Journal of Toxins, 6 (1), 1-7. https://doi.org/10.3923/rjt.2014.1.7
Daengrot, C., Rukachaisinkul, V., Tadpetch, K., Phongpaichi,t S., Bowornwiriyapan, K., Sakayarojc, J., Shend, X. (2016). Penicillanthone and penicillidic acids A - C from the soil-derived fungus Penicillium aculeatum PSU -RSPG105. RSC Advances, 46, 39530 - 40625. https://doi.org/10.1039/C6RA04401H
Savchuk, Ya.I., Zaichenko, O.M., Tsiganenko, K.S. (2013). Antibiotic activity of some fungi. Mikrobiol. Z., 75 (5), 52- 61.
Rubezhniak, I.G. Antibiotic and phytotoxic activities of cultural filtrates of some micromycete strains. (2018). Mikrobiol. Z., 80 (5), 90 -97. https://doi.org/10.15407/microbiolj80.05.090
Bozoudi, D., Tsaltas, D. (2018). The multiple and versatile roles of Aureobasidium pullulans in the vitivinicultural sector. Fermentation, 4 (85), 1-15.
https://doi.org/10.3390/fermentation4040085
Zain, M.E., Awaad, A.S., Razak, A.A., Maitland, D.J., Khaims, N.E., Sakhawy, M.A. (2009). Secondary metabolites of Aureobasidium pullulans isolated front Egyptian soil and their biological activity. J. Appl. Sci. Res., 5, 1582- 1591.
McCormack, P.J., Wildman, H.G., Jeffries, P. (1994). Production of antibacterial compounds by phylloplane-inhabiting yeasts and yeast like fungi. Appl Environ. Microbiol., 60, 927 - 931.
https://doi.org/10.1128/AEM.60.3.927-931.1994
Ferreira-Pinto, M.M., Moura-Guedes, M.C., Barreiro, M.G., Pais, I., Santos, M.R., Silva, M.J. (2006). Aureobasidium pullulans a biocontrol agent of blue mold in "Rocha" pear". Communications in agricultural and applied biological sciences, 71(3 Pt B), 973-978.
Zhang, D., Spadaro, D., Valente, S., Garibaldi, A., Gullino, M.L. (2012). Cloning, characterization, expression and antifungal activity of an alkaline serine protease of Aureobasidium pullulans PL5 involved in the biological control of postharvest pathogens. Int. J. of Food Microbiology, 153 (3), 453-464.
https://doi.org/10.1016/j.ijfoodmicro.2011.12.016
Australian pesticides and veterinary medicines authority. (2017). Public release summary on the evaluation of the new active Aureobasidium pullulans (strains DSM 14940 and DSM 14941) in the product Botector Fungicide. Retrieved from URL: https://apvma.gov.au/sites/default/files/publication/27401-82495_105881_-_botector_fungicide_-_prs_0.docx
Oliveira, S.M., Sena, K.X., Gusmio, N.B. (2009). Secondary metabolites produced by endophytic fungus Paecilomyces variotii Bainier with antimicrobial activity against Enterococcus faecalis. In: Proceedings of the II Intonational Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2007), 2007 Nov 28 - Dec 1; University of Seville, Spain. Formatex Research Center, Spain, 519 - 22.
Wang, H., Hong, J., Yin, J., Moon, H.R., Liu, Y., Wei, X., Oh, D.C., Jung, J.H. (2015). Dimeric octaketide spiroketals from the jellyfish-derived fungus Paecilomyces variotii J08NF-1. J. Nat. Prod., 78 (11), 2832-2836. https://doi.org/10.1021/acs.jnatprod.5b00594
Soman, A.G., Gloer, J.B., Wicklow, D.T. (1999). Antifungal and Antibacterial Metabolites from a Sclerotium-Colonizing Isolate of Mortierella vinacea. J. Nat. Prod., 62 (2), 386-388.
Downloads
Published
Issue
Section
License
Relationship between right holders and users shall be governed by the terms of the license Creative Commons Attribution – non-commercial – Distribution On Same Conditions 4.0 international (CC BY-NC-SA 4.0):https://creativecommons.org/licenses/by-nc-sa/4.0/deed.uk
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).