Phospholipid biomarkers analysis as a tool for microbial community assessment on radionuclides contaminated territories

Authors

  • Y Ruban National University of Life and Environmental Sciences of Ukraine image/svg+xml
  • K Shavanova National University of Life and Environmental Sciences of Ukraine image/svg+xml
  • V llienko National University of Life and Environmental Sciences of Ukraine image/svg+xml
  • K Korepanova National University of Life and Environmental Sciences of Ukraine image/svg+xml
  • D Samofalova Інститут харчової біотехнології та геноміки НАН України ,
  • N Shpyrka National University of Life and Environmental Sciences of Ukraine image/svg+xml
  • N Nesterova National University of Life and Environmental Sciences of Ukraine image/svg+xml
  • O Pareniuk National University of Life and Environmental Sciences of Ukraine image/svg+xml
  • S Nikonov ,

DOI:

https://doi.org/10.31548/biologiya2020.03.009

Keywords:

Biomarkers, radionuclides, Chernobyl Exclusion Zone, PLFA, microorganisms

Abstract

The presence of specific components in the environment can change the state of cenoses. The effect of ionizing radiation on plant communities, animals and humans have been well studied, while the effect on soil microflora has not been insufficiently studied. In this paper investigated the effect of radionuclide contamination on microflora of soil samples from the territory of PTLRW "Red Forest 1" (trench), "Red Forest 2" (outside the trench), " Cooling Pond " and " Zalissia ". Phospholipid fatty acid (PLFA) content was obtained by PLFA analysis. The highest level of total PLFA was observed in the territory of "Zalissia" which was 17.40 ± 10.59 μg / h. From the territory of PTLRW "Red Forest 1" (trench) and "Red Forest 2" (outside the trench) the level of total PLFA was 16.29 ± 3.43 μg / g and 16.40 ± 2.90 μg / h, respectively. The PLFA content of the "Cooling Pond" was significantly different from the "Red Forest" and " Zalissia ".

The taxonomic groups assessment of the samples, a fungus, gram-positive and gram-negative bacteria content increased in PTLRW "Red Forest" relative to the point "Zalissia ".

Author Biographies

  • Y Ruban, National University of Life and Environmental Sciences of Ukraine
    аспірантка кафедри радіобіології та радіоекології
  • K Shavanova, National University of Life and Environmental Sciences of Ukraine
    кандидат біологічних наук
  • V llienko, National University of Life and Environmental Sciences of Ukraine
    кандидат біологічних наук, старший викладач кафедри радіобіології та радіоекології
  • K Korepanova, National University of Life and Environmental Sciences of Ukraine
    студентка магістратури, факультету захисту рослин, біотехнології та екології
  • D Samofalova, Інститут харчової біотехнології та геноміки НАН України,
    кандидат біологічних наук
  • N Shpyrka, National University of Life and Environmental Sciences of Ukraine
    асистент кафедри землеробства та гербології
  • N Nesterova, National University of Life and Environmental Sciences of Ukraine
    кандидат сільськогосподарських наук, кафедри фізіології , біохімії рослин та біоенергетики
  • O Pareniuk, National University of Life and Environmental Sciences of Ukraine
    кандидат біологічних наук, старший науковий співробітник кафедри радіобіології та радіоекології

References

Apostel, C., Herschbach, J., Bore, E. K., Spielvogel, S., Kuzyakov, Y., & Dippold, M. A. (2018). Food for microorganisms: Position-specific 13C labeling and 13C-PLFA analysis reveals preferences for sorbed or necromass C. Geoderma, 312 (February 2017), 86-94. https://doi.org/10.1016/j.geoderma.2017.09.042

Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917. https://doi.org/10.1139/o59-099

Einor, D., Bonisoli-alquati, A., Costantini, D., Mousseau, T. A., & Møller, A. P. (2016). Science of the Total Environment Ionizing radiation , antioxidant response and oxidative damage : A meta-analysis. Science of the Total Environment, 548-549, 463-471. https://doi.org/10.1016/j.scitotenv.2016.01.027

ISO 18589-3:2007: International standard. Measurement of radioactivity in the environment - Soil - Part 3: Measurement of gamma-emitting radionuclides. 2007. 28 p. (2007). https://www.iso.org/ru/standard/40875.html

Ivanishvili, N. I., Gogebashvili, M. E., & Gvritishvili, N. Z. (2016). Gamma-radiation effect on the parameters of the population recovery of plants. Annals of Agrarian Science, 14(4), 319-322. https://doi.org/10.1016/j.aasci.2016.10.005

Jeannotte, R., Hamel, C., Jabaji, S., & Whalen, J. K. (2011). Pyrolysis-mass spectrometry and gas chromatography-flame ionization detection as complementary tools for soil lipid characterization. Journal of Analytical and Applied Pyrolysis, 90(2), 232-237. https://doi.org/10.1016/j.jaap.2010.12.010

Kashparov, V., Yoschenko, V., Levchuk, S., Bugai, D., Van Meir, N., Simonucci, C., & Martin-Garin, A. (2012). Radionuclide migration in the experimental polygon of the Red Forest waste site in the Chernobyl zone - Part 1: Characterization of the waste trench, fuel particle transformation processes in soils, biogenic fluxes and effects on biota. Applied Geochemistry, 27(7), 1348-1358. https://doi.org/10.1016/j.apgeochem.2011.11.004

Kashparov, Valery, Levchuk, S., Zhurba, M., Protsak, V., Khomutinin, Y., Beresford, N. A., & Chaplow, J. S. (2018). Spatial datasets of radionuclide contamination in the Ukrainian Chernobyl Exclusion Zone. Earth System Science Data, 10(1), 339-353.

https://doi.org/10.5194/essd-10-339-2018

Nichols, P. D., Glen A., S., Antworth, C. P., Hanson, R. S., & White, D. C. (1985). Phospholipid and lipopolysaccharide normal and hydroxy fatty acids as potential signatures for methane-oxidizing bacteria. FEMS Microbiology Letters, 31(6), 327-335.

https://doi.org/10.1016/0378-1097(85)90028-X

Niedrée, B., Berns, A. E., Vereecken, H., & Burauel, P. (2013). Do Chernobyl-like contaminations with (137)Cs and (90)Sr affect the microbial community, the fungal biomass and the composition of soil organic matter in soil? Journal of Environmental Radioactivity, 118, 21-29. https://doi.org/10.1016/j.jenvrad.2012.11.007

Olsson, P. A. (1999). Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiology Ecology, 29(4), 303-310. https://doi.org/10.1016/S0168-6496(99)00021-5

Parker, J. H., Smith, G. A., Fredrickson, H. L., Vestal, J. R., & White, D. C. (1982). Sensitive assay, based on hydroxy fatty acids from lipopolysaccharide lipid A, for gram-negative bacteria in sediments. Applied and Environmental Microbiology, 44(5), 1170-1177. https://doi.org/10.1128/aem.44.5.1170-1177.1982

Rushdi, A. I., Oros, D. R., Al-Mutlaq, K. F., He, D., Medeiros, P. M., & Simoneit, B. R. T. (2016). Lipid, sterol and saccharide sources and dynamics in surface soils during an annual cycle in a temperate climate region. Applied Geochemistry, 66, 1-13. https://doi.org/10.1016/j.apgeochem.2015.11.007

Stahl, P. D., & Klug, M. J. (1996). Characterization and differentiation of filamentous fungi based on fatty acid composition. Applied and Environmental Microbiology, 62(11), 4136-4146. https://doi.org/10.1128/aem.62.11.4136-4146.1996

Tribollet, B. (2012). Microbiologically influenced corrosion (MIC) in nuclear power plant systems and components. In Nuclear Corrosion Science and Engineering (pp. 230-261). https://doi.org/10.1533/9780857095343.2.230

Vestal, J. R., & White, D. C. (1989). Lipid Analysis Microbial Ecology. BioScience, 39(8), 535-541.

https://doi.org/10.2307/1310976

White, D. C. (1988). Validation of quantitative analysis for microbial biomass, community structure, and metabolic activity. Arch. Hydrobiol. Erg. Limnol., 31, 1-18.

White, D. C., Davis, W. M., Nickels, J. S., King, J. D., & Bobbie, R. J. (1979). Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia, 40(1), 51-62. https://doi.org/10.1007/BF00388810

Wilkinson, S. G. (1988). Gram-negative bacteria. In C. Ratledge & S. Wilkinson (Eds.), Microbial Lipids Vol. 1 (pp. 299-488). London: Academic Press.

Zelles, L. (1997). Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere, 35(1-2), 275-294. https://doi.org/10.1016/S0045-6535(97)00155-0

Zelles, L. (1999). Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review. Biology and Fertility of Soils, 29(2), 111-129. https://doi.org/10.1007/s003740050533

Downloads

Published

2020-10-29

Issue

Section

Статті