Ефективність бактерій роду Bacillus проти хвороб ячменю, які спричиняються грибом Bipolaris Sorokiniana, на різних за стійкістю сортах
DOI:
https://doi.org/10.31548/biologiya2020.04.006Keywords:
Bacillus spp., barley, biological control, Bipolaris sorokiniana, common root rot, spot blotchAbstract
Досліджено ефективність двох штамів р. Bacillus, B. subƟlis 16 and B. pumilus 11, проти хвороб ячменю ярого, що спричиняються грибом Bipolaris sorokiniana (Sacc.) Shoemaker. Встановлено, що антагоністична активність залежить як від стійкості сорту, так і від штаму бактерії. Суттєве зниження розвитку темно-бурої плямистості листків відмічали на найбільш сприйнятливому до хвороби сорті ячменю Нащадок у разі обробки рослин суспензією клітин штаму B. subƟlis 16. За внесення в ризосферу ячменю бактеріальних суспензій обох штамів відмічене суттєве зниження розвитку звичайної кореневої гнилі на сприйнятливому до хвороби сорті ячменю ярого Сяйво, що, проте, не супроводжувалося збільшенням маси проростків. Суттєвий приріст біомаси коренів і проростків при обробці бактеріальними інокулянтами відмічали на сортах із середньою стійкістю до хвороби: Себастьян і Антей.References
Tricase C., Amicarelli V., Lamonaca E., Rana R.L. (2018) Economic analysis of the barley market and related uses. Grasses as food and feed. / Ed. Z. Tadele Univ. of Bern, Switzerland.
https://doi.org/10.5772/intechopen.78967
Kim, Y.S., Balaraju, K., Jeon, Y.H. (2016) Biological characteristics of Bacillus amyloliquefaciens AK-0 and suppression of ginseng root rot caused by Cylindrocarpon destructans. Journ Appl. Microbiol., 122. 166-179. https://doi.org/10.1111/jam.13325
Ding, T., Su, B., Chen, X., Xie, S., Gu, S., Wang, Q., Huang, D., Jiang, H. (2017) An endophytic bacterial strain isolated from Eucommia ulmoides inhibits southern corn leaf blight. Front. Microbiol., 8, Article 903. https://doi.org/10.3389/fmicb.2017.00903
Chowdhury, S.P., Uhl, J., Grosch, R., Alqueres, S., Pittroff, S., Dietel, K., Schmitt-Kopplin, P., Borriss, R., Hartmann, A. (2015) Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani. Mol Plant-Microbe Inter., 28. 984-995.
https://doi.org/10.1094/MPMI-03-15-0066-R
Gond, S.K., Bergen, M.S., Torres, M.S., White, J. F. Jr. (2015) Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defense gene expression in maize. Microbiol Res., 172. 79-87.
https://doi.org/10.1016/j.micres.2014.11.004
Kulimushi, P.Z., Arias, A.A., Franzil, L., Steel, S., Ongena, M. (2017) Stimulation of fengycin-type antifungal lipopeptides in Bacillus amyloliquefaciens in the presence of the maize fungal pathogen Rhizomucor variabilis. Frontiers in Microbiol. 8, article 850. https://doi.org/10.3389/fmicb.2017.00850
Patyka, N.V., Patyka, T.I. (2020) Symbiotic microbial communities of insects: functioning and entomopathogenic action potential initiation on the example of Bacillus thuringiensis. Mikrobiol Z., 82(1). 62-73. (In Ukrainian). https://doi.org/10.15407/microbiolj82.01.062
Patyka, T.I., Patyka, N.V. (2020) Bacillus thuringiensis spp. israelensis and Control of Aedes aegypti Invasive Mosquitoes Species in Ecosystems. Mikrobiol Z., 82(5). 88-97. (In Ukrainian). https://doi.org/10.15407/microbiolj82.05.088
Notz, R., Maurhofer, M., Schnider-Keel, U., Duffy, B., Haas, D., Defago, G. (2001) Biotic factors affecting expression of the 2,4-diacetylphloroglucinol biosynthesis gene phlA in Pseudomonas fluorescens biocontrol strain CHA0 in the rhizosphere. Phytopathol. 91. 873-881. https://doi.org/10.1094/PHYTO.2001.91.9.873
Huang, C. N., Lin, C. P., Hsieh, F. C., Lee, S. K., Cheng, K. C., & Liu, C. T. (2016). Characterization and evaluation of Bacillus amyloliquefaciens strain WF02 its biocontrol activities and genetic responses against bacterial wilt in two different regarding resistant tomato cultivars. World journal of microbiology & biotechnology, 32(11), 183. https://doi.org/10.1007/s11274-016-2143-z
Harman, G.E. (2006) Overview of mechanisms and uses of Trichoderma spp. Phytopathol., 96. 190-194.
https://doi.org/10.1094/PHYTO-96-0190
Kriuchkova, L. (2017) Biological control of leaf disease of barley with Bacillus strain. Biologija, 63 (3). 289-295. https://doi.org/10.6001/biologija.v63i3.3584
Yoshida, S., Hiradate, S., Tsukamoto, T., Hatakeda, K., Shirata, A. (2001) Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathol., 91. 181-187.
https://doi.org/10.1094/PHYTO.2001.91.2.181
Cawoy, H., Bettiol, W., Fickers, P., Ongena, M. (2011) Bacillus-based biological control of plant diseases, in: Stoytcheva, M. (Eds.), Pesticides in the Modern World - Pesticides Use and Management. IntechOpen, pp. 273-302. http://www.intechopen.com/books/pesticides-in-themodern-world-pesticides-use-and-management/bacillus-based-biological-control-of-plant-diseases
De Vleesschauwer, D., Yang, Y., Cruz, C.V., Hofte, M. (2010) Abscisic acid-induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling. Plant Physiol., 152. 2036-2052. www.plantphysiol.org/cgi/doi/10.1104/pp.109.152702
https://doi.org/10.1104/pp.109.152702
Ownley, B.H., Weller, D.M., Thomashow, L.S. (1992) Influence of in situ and in vitro pH on suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-79. Phytopathol. 82. 178-184. https://doi.org/10.1094/Phyto-82-178
Bateman, G.L. (1988) Pseudocercosporella anguioides, a weakly pathogenic fungus associated with eyespot in winter wheat at a site in England. Plant Path. 37. 291 - 296
https://doi.org/10.1111/j.1365-3059.1988.tb02077.x
Kriuchkova L. (2016) Korenevi i prykorenevi khvoroby pshenytsi [Root and stem-base diseases of wheat]. NULESU, Kyiv, 164 p. (In Ukrainian)
Kriuchkova, L., Patyka, T., Shmyhel, T. (2017) In vitro potential of two Bacillus strains as biocontrol agents against plant pathogenic fungi. VI annual scientific conference «Biotechnology: accomplishment and hopes». NULESU, Kyiv. 24-25.
Nurnberger, T., Lipka, V. (2005). Non-host resistance in plants: new insights into an old phenomenon. Mol Plant Pathol. 6(3). 335-345. https://doi.org/10.1111/j.1364-3703.2005.00279.x
Rudrappa, T., Czymmek, K.J., Pare, P.W., Bais, H.P. (2008). Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol. 148. 1547-1556.
https://doi.org/10.1104/pp.108.127613
Pal, K.K., McSpadden Gardener, B. (2006). Biological control of plant pathogens. in: The Plant Health Instructor. pp. 1-25.
Downloads
Published
Issue
Section
License
Relationship between right holders and users shall be governed by the terms of the license Creative Commons Attribution – non-commercial – Distribution On Same Conditions 4.0 international (CC BY-NC-SA 4.0):https://creativecommons.org/licenses/by-nc-sa/4.0/deed.uk
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).