Efficiency of formation and functioning of the symbiotic soybean system with glyphosate treatment

Автор(и)

  • I. Gumeniuk ,
  • A. Levishko
  • O. Demyanyuk

DOI:

https://doi.org/10.31548/biologiya2021.01.008

Ключові слова:

glyphosate, soybean, Bradyhizobium, nodule bacteria, inoculation, nitrogen fixation

Анотація

The efficiency of the formation and functioning of the soybean symbiotic system during the crops treatment with glyphosate and pre-sowing seed inoculation with different strains of Bradyrhizobium in the field studied. It is known, that glyphosate can affect symbiotic nitrogen fixation through direct action on rhizobia and symbiotic formations, we took plant samples for analysis after four weeks of glyphosate treatment and determined the aboveground mass of plants and symbiotic apparatus formation evaluated by the number of nodules, their mass and nitrogen fixation activity. It was shown that the late treatment (35 days after sowing) with glyphosate does not provide a sufficient level of weed control and under such conditions inhibits the development and growth of soybean plants, reduces the growth of aboveground and root mass. Treatment of plants with glyphosate before the formation of symbiotic apparatus (21 days after sowing) reduces nitrogen fixation activity by 35-50%, but it does not have a significant effect on the formation of soybean yield. The obtained results confirmed the hypothesis of intensification of the nitrogen complex during late treatment of plants with glyphosate in plants inoculated with Bradyrhizobium japonicum strain EL-35 and the composition of strains of B. japonicum EM-24 and B. japonicum EL-35. The most effective for inoculation of soybean plants was a mixture of the studied strains of B. japonicum EM-24 and B. japonicum EL-35, which provides high nitrogen fixation activity and productivity. Therefore, to reduce the negative impact of glyphosate on the nitrogen fixation activity of symbiotic systems and to obtain high soybean productivity, it is necessary to select rhizobia strains with a high rate of symbiotic system formation, because even a slight decrease in nitrogen fixation can have long-term negative consequences.

Посилання

Oehrle, N.W., Sarma, A.D., Waters, J.K., Emerich, D.W. (2008). Proteomic analysis of soybean nodule cytosol. Phytochemistry, 69(13). 2426-2438. DOI: 10.1016/j.phytochem.2008.07.004.

Reganold, J.P.; Wachter, J.M. (2016). Organic agriculture in the twenty-first century. Nat. Plants, 3(2). 1-8. DOI: 10.1038/nplants.2015.221

Тильба, В.А., Синеговская, В.Т. (2012). Роль симбиотической азотфиксации в повышении фотосинтетической продуктивности сои. Доклады Российской академии сельскохозяйственных наук, 5. 16-18. DOI: 10.25230/2412–608Х–2019–4–180–119–123.

Державна служба статистики України. ULR: http://ukrstat.gov.ua

Bohn, T., Cuhra, M., Traavik, T., Sanden, M., Fagan, J., Primicerio, R. (2014). Compositional differences in soybeans on the market: Glyphosate accumulates in Roundup Ready GM soybeans. Food Chemistry, 153. 207-215. DOI: 10.1016/j.foodchem.2013.12.054.

Arregui M.C., Lenardón A., Sanchez D., Maitre M.I., Scotta R., Enrique S. (2004). Monitoring glyphosate residues in transgenic glyphosate-resistant soybean. Pest Manag. Sci., 60. 163-166. DOI: 10.1002/ps.775.

Miyazaki, J., Bauer-Panskus, A., Bоhn, T. (2019). Insufficient risk assessment of herbicide-tolerant genetically engineered soybeans intended for import into the EU. Environmental Science Europe, 31(92). 1-21. DOI: 10.1186/s12302-019-0274-1.

Benbrook, C.M. (2016). Trends in glyphosate herbicide use in the United States and globally. Environmental Science Europe. 28(3).1-15. DOI:10.1186/s12302-016-0070-0.

Benachour, N., Séralini, G.E. (2009). Glyphosate formulations induce apoptosis and necrosis in human umbilical, embryonic and placental cells. Chem. Res. Toxicol, 22(1). 97-105. DOI: 10.1021/tx800218n.

Vecchio, L., Cisterna, B., Malatesta, M., Martin, T E, Biggiogera M. (2009). Ultrastructural analysis of testes from mice fed on genetically modified soybean. Eur. J. Histochem, 48. 449-453. DOI: 10.4081/920.

Duke, S.O., Lydon, J., Koskinen, W.C., Moorman, T.B., Chaney, R.L., Hammerschmidt R. (2012). Glyphosate Effects on Plant Mineral Nutrition, Crop Rhizosphere Microbiota, and Plant Disease in Glyphosate-Resistant Crops. J. Agric. Food. Chem, 60(42). Р. 10375–10397. DOI: 10.1021/jf302436u.

Natarajan, S., Bae, C., Xu, H. (2007). Proteomic and genetic analysis of glycinin subunits of sixteen soybean genotypes. Plant Physiol Biochem, 45(6-7). 436-444. DOI: 10.1016/j.plaphy.2007.03.031.

Saz, J.M., Marina, M.L. (2007). High performance liquid chromatography and capillary electrophoresis in the analysis of soybean proteins and peptides in foodstuffs. J. Sep. Sci, 30(4). 431-451. DOI: 10.1002/jssc.200600247.

Kremer, R.J. (2014). Environmental implications of herbicide resistance: soil biology and ecology. Weed Sci, 62. 415-426. DOI: 10.1614/WS-D-13-00114.1.

dos Santos, J.B., Ferreira, A., Kasuya, M.C.M., da Silva, A.A., de Oliveira Procopio, S. (2005). Tolerance of Bradyrhizobium strains to glyphosate formulations. Crop. Protection, 24. 543-547. DOI:10.1016/j.cropro.2004.10.007.

Moorman, T.B. (1986). Effect of herbicides on the survival of Rhizobium japonicum strains. Weed. Sci, 34. 628-633. DOI:10.1017/S0043174500067564.

Seminoti Jacques, R.J., de Oliveira Procópio, S., dos Santos, J.B., Kasuya, M.C.M., da Silva, A.A. (2010). Sensitivity of Bradyrhizobium strains to glyphosate. Rev. Ceres. Viçosa, 57(1). 28-33. DOI: 10.1590/S0034-737X2010000100006.

Meena, R.S., Kumar, S., Datta, R. (2020). Impact of Agrochemicals on Soil Microbiota and Management: A Review. Land, 9(34). 1-21.

DOI: 10.3390/land9020034.

Zablotowicz, R.M., Reddy, K.N. (2003). Impact of glyphosate on the Bradyrhizobium japonicum symbiosis with glyphosate-resistant transgenic soybean: a minireview. J. Environ. Qual, 33. P. 825-831. DOI: 10.2134/jeq2004.0825.

Liu, C.M., McLean, P.A., Sookdeo, C.C., Cannon, F.C. (1991). Degradation of the herbicide glyphosate by members of the family Rhizobiaceae. Appl. Environ. Microbiol, 57(6). 1799-1804. DOI: 10.1128/AEM.57.6.1799-1804.1991.

Reddy, K.N., Hoagland, R.E., Zablotowicz, R.M. (2000). Effect of glyphosate on growth, chlorophyll content and nodulation in glyphosate-resistant soybeans (Glycine max) varieties. J. New Seeds, 2. P. 37-52. DOI: 10.1614/0043-1745(2003)051[0496:GSRTVS]2.0.CO;2.

Hardy, R.W., Holsten, R.D., Jackson, E.K., Burns, R.S. (1968). The acetylene-ethylene assey for N2 fixation: laboratory and field evaluation. Plant physiol, 43(8). 1185–1207. DOI: 10.1104/pp.43.8.

Fan, L., Feng, Yu., Weaver, D., Delaney, D., Wehtje, G., Wang, Gu. (2017). Glyphosate effects on symbiotic nitrogen fixation in glyphosate-resistant soybean. Applied Soil Ecology, 121. 11-19. DOI:10.1016/j.apsoil.2017.09.015.

Завантаження

Опубліковано

2021-06-17

Номер

Розділ

Статті