POLYMORPHISM OF ACTIN GENE INTRONS AS AN INSTRUMENT FOR GENOTIVING OF THE REPRESENTATIVES FROM SOLANACEAE FAMILY
DOI:
https://doi.org/10.31548/biologiya2018.287.071Abstract
In modern selection, DNA markers are an indispensable tool for identifying and selecting genotypes of economically valuable crops. New and promising direction of development of molecular markers is a gene-targeted markers (GTMs), namely markers, which are based on the identified intron length polymorphism of genes (ILP). The aim of the study is to evaluate the usefulness of the length polymorphism of the second actin gene intron (АВР-actinbasepolymorphism) for DNA-profiling varieties of plants from family Solanaceae.DNA was isolated from seedlings using CTAB-method. PCR was conducted using our own universal АВР primers. The fragments were separated by electrophoresis in a 6% polyacrylamide gel, and visualized by silverstains. 12 varieties of tomato (S. lycopersicum) and 4 potato varieties (S. tuberosum) were analyzed. Each tomato variety contained at least 7 fragments of II-nd intron, but only one polymorphic bend was detected. The АВР-profiles of the potato varieties were more heterogeneous. The different varieties of tomatoes and potatoes were identificated by ABP marker system. It was shown the significant difference between the profiles of the analyzed species. In general, ABP-markers are a reliable source of genetic information and can be widely used for genotyping and evaluating of the differentiation of commercially valuable plantsof Solanaceae.
References
Khlestkina, E. K. (2013). Molecular markers in genetic studies and breeding. Vavilov J. Genetics Breed., 17, 1044-1054.
https://doi.org/10.1134/S2079059714030022
Andersen, J. R., Lubberstedt, T. (2003). Functional markers in plants. Trends Plant Sci., 8, 554-560. https://doi.org/10.1016/j.tplants.2003.09.010
Bernatzky, R., Tanksley, S. D. (1986). Toward a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics, 112, 887-898.
Saliba-Colombani, V., Causse, M., Gervais, L., Philouze, J. (2000). Efficiency of RFLP, RAPD, and AFLP markers for the construction of an intraspecific map of the tomato genome. Genome, 43, 29-40.
https://doi.org/10.1139/gen-43-1-29
Ohyama, A., Asamizu, E., Negoro, S., Miyatake, K., Yamaguchi, H., Tabata, S., Fukuoka, H. (2009). Characterization of tomato SSR markers developed using BAC-end and cDNA sequences from genome databases. Mol. Breed., 23, 685-691. https://doi.org/10.1007/s11032-009-9265-z
Gupta, P. K., Rustgi, S. (2004). Molecular markers from the transcribed/expressed region of the genome in higher plants. Funct. Integr. Genomics., 4, 139-162. https://doi.org/10.1007/s10142-004-0107-0
Wang, X., Zhao, X., Zhu, J., Wu, W. (2005). Genome-wide investigation of intron length polymorphisms and their potential as molecular markers in rice (Oryza sativa L.). DNARes., 12, 417-427. https://doi.org/10.1093/dnares/dsi019
Postovoitova, A. S., Bayer, G. Ya., Pydiura, N. A., Pastukhova, N. L., Pirko, Ya.V., Yemets, A. I., Blume, Ya.B. (2015). Poshuk ta analiz poslidovnostey geniv aktinu v genomi l'onu [Search and analysis of sequences of the actin genes in flax genome]. NUBIP scientific reports, 8(57). UPL: http://nd.nubip.edu.ua/2015_8/index.html/
Shirasawa, K., Hirakawa, H. (2013). DNA marker applications to molecular genetics and genomics in tomato. Breed. Sci., 63, 21-30.
https://doi.org/10.1270/jsbbs.63.21
Milbourne, B. D., Meyer, R., Bradshaw, J. E., Baird, E., Bonar, N., Provan, J. (2010). Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivated potato. Mol. Breed., 3(2), 127-136.
https://doi.org/10.1023/A:1009633005390
Sato, Sh., Tabata, S., Hirakawa, H., Asamozu, E. (2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485, 635-641. https://doi.org/10.1038/nature11119
Xu, X., Pan, S., Cheng, S., Zhang, B. (2011). Genome sequence and analysis of the tuber crop potato. Nature, 475(7355), 189-195.
https://doi.org/10.1038/nature10158
Sambrook, J., David, W. R. (2001). Molecular Сloning: A Laboratory Manua. Cold Spring Harbor, 2, 2344.
Rahman, M. H., Jaquish, B., Khasa, P. D. (2000). Optimization of PCR protocol in microsatellite analysis with silver and SYBR stains. Plant Mol. Biol. Rep., 18, 339-348.
https://doi.org/10.1007/BF02825061
Gunning, P. W., Ghoshdastider, U., Whitaker, S., Popp, D., Robinson, R. C. (2015). The evolution of compositionally and functionally distinct actin filaments.J. Cell Sci., 128(11), 2009-2019. https://doi.org/10.1242/jcs.165563
Postovoitova, A. S., Pirko, Ya.V., Blume, Ya.B. (2016). Polimorfizm dovgin drugogo intronu geniv actinu v genomi Linum usitatissimum L. [The second intron length polymorphism of actin genes in Linum usitatissimum L. genome]. Factors of experimental evolution of organisms, 19, 38 - 42.
Postovoitova, A. S., Yotka, O. Y., Pirko, Ya. V., Blume, Ya. B. (2017). Analysis of polymorphism of the lengths of introns of actin genes in representatives of the genus LINUM. Plant biology and biotechnology: materials of the III conference of young scientists. Kyiv (Ukraine), 34.
Bardini, M., Lee, D., Donini, P., Mariani, A., Giani, S., Toschi, M., Lowe, C., Breviario, D. (2004). Tubulin-based polymorphism (TBP): a new tool, based on functionally relevant sequences, to assess genetic diversity in plant species. Genome, 47, 281-291. https://doi.org/10.1139/g03-132
Rabokon, A. N., Pirko, Ya.V., Demkovych, A. Ye., Blume, Ya.B. (2018). Comparative analysis of the efficiency of intron-length polymorphism of β-tubulin genes and microsatellite loci for flax varieties genotyping. Cytol. Genet., 52(1),1-10.
https://doi.org/10.3103/S0095452718010115
Rabokon, A. N., Demkovych, A., Pirko, Ya., Blume, Ya. (2015). Doslidgennya polimorfizmu dovgeni introniv geniv β-tubulinu u sortiv Triticum aestivum L. ta Hordeum vulgare L. [Studing of β-tubulin gene intron length polymorphism of Triticum aestivum L. and Hordeum vulgare L.varieties]. Factors of experimental evolution of organisms, 1, 82 - 86.
Rabokon, A., Demkovych, A., Sozinov, A., Kozub, N., Sozinov, I., Pirko, Ya., Blume, Y. (2017). Intron length polymorphism of β-tubulin genes of Aegilops biuncialis Vis. Cell Biol. Intl. https://doi.org/10.1002/cbin.10886
Downloads
Published
Issue
Section
License
Relationship between right holders and users shall be governed by the terms of the license Creative Commons Attribution – non-commercial – Distribution On Same Conditions 4.0 international (CC BY-NC-SA 4.0):https://creativecommons.org/licenses/by-nc-sa/4.0/deed.uk
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).