Impact of γ-irradiation on biofilm-formation by corrosion-relevant heterotrophic bacteria

Authors

DOI:

https://doi.org/10.31548/dopovidi2020.05.002

Keywords:

Bio-corrosion, biofilm formation, exo-polymeric substances, ionizing radiation, Pseudomonas pseudoalcaligenes, Stenotrophomonas maltophilia

Abstract

At nuclear hazard sites, such as the Chernobyl reactor sarcophagus or Fukushima Nuclear Power Plant, radiation is one of the main factors influencing microbial communities including those involved in microbially influenced corrosion (MIC) of metal structures. By studying the impact of radiation on corrosion-relevant bacteria it may be possible in the future to predict changes in MIC.  We believe that the composition and function of natural multi-species biofilms will change when exposed to the stress of ionizing radiation. To address this possibility, biofilm formation by Pseudomonas pseudoalcaligenes and Stenotrophomonas maltophilia were studied after exposure to a range of radiation dosages. Altered planktonic cell morphologies and biofilm architectures on submerged glass surfaces were noted 3 – 7 days after low-doasage sub-lethal irradiation (5.3 Gy) of samples at the micro-colony, macro-colony and mature biofilm stages of development. Furthermore, significant differences in the percentage area covered by biofilms and the release of viable planktonic cells was also noted. These observations suggested that exposure, considered as insignificant levels of irradiation, can be enough to alter biofilm formation of corrosion-relevant bacteria. Such low dosage radiation may have significant impact on soil microbial communities in nuclear hazard sites, potentially altering the MIC of exposed metal structures, their stability and service life of underground metal constructions.

References

Aleksakhin, R. M. (2009). Radioactive contamination as a type of soil degradation. Eurasian Soil Science, 42(12), 1386-1396. https://doi.org/10.1134/S1064229309120096

Andreyuk, K. I., Kozlova, I. P., Kopteva, Z. P., Piliashenko-Novohatny, A. I., Zanina, V. V., & Purish, L. M. (2005). Microbial corrosion of underground construction (Naukova Du). Kyiv.

Beech, I. B., Sunner, J. A., & Hiraoka, K. (2005). Microbe-surface interactions in biofouling and biocorrosion processes. International Microbiology : The Official Journal of the Spanish Society for Microbiology, 8(3), 157-168. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16200494

Billi, D., Friedmann, E. I., Hofer, K. G., Caiola, M. G., & Ocampo-Friedmann, R. (2000). Ionizing-Radiation Resistance in the Desiccation-Tolerant Cyanobacterium Chroococcidiopsis. Applied and Environmental Microbiology, 66(4), 1489-1492.

https://doi.org/10.1128/AEM.66.4.1489-1492.2000

Boretska, M., Bellenberg, S., Moshynets, O., Pokholenko, I., & Wolfgang, S. (2013). Change of Extracellular Polymeric Substances Composition of Thiobacillus thioparus in Presence of Sulfur and Steel. Journal of Microbial & Biochemical Technology, 3(5), 068-073. Retrieved from http://www.omicsonline.org/change-of-extracellular-polymeric-substances-composition-of-thiobacillus-thioparus-in-presence-of-sulfur-and-steel-1948-5948.10000102.php&&aid=16042

https://doi.org/10.4172/1948-5948.10000102

Boretska, M. O., & Kozlova, I. A. (2010). Biofilms on a metal surface as microbial corrosion factor. Microbiol. Zurn., 72(4), 50-63.

Byun, M. W., Kim, J. H., Kim, D. H., Kim, H. J., & Jo, C. (2007). Effects of irradiation and sodium hypochlorite on the micro-organisms attached to a commercial food container. Food Microbiology, 24(5), 544-548. https://doi.org/10.1016/j.fm.2006.08.005

Clark, M. J., & Smith, F. B. (1988). Wet and dry deposition of Chernobyl releases. Nature, 332(6161), 245-249. https://doi.org/10.1038/332245a0

Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., & Lappin-Scott, H. M. (1995). Microbial biofilms. Annual Review of Microbiology, 49, 711-745. https://doi.org/10.1146/annurev.mi.49.100195.003431

Cox, M. M., & Battista, J. R. (2005). Deinococcus radiodurans - the consummate survivor. Nature Reviews. Microbiology, 3(11), 882-892. https://doi.org/10.1038/nrmicro1264

Czirják, G. A., Møller, A. P., Mousseau, T. A., & Heeb, P. (2010). Microorganisms associated with feathers of barn swallows in radioactively contaminated areas around chernobyl. Microbial Ecology, 60(2), 373-380. https://doi.org/10.1007/s00248-010-9716-4

Daly, M. J., Gaidamakova, E. K., Matrosova, V. Y., Vasilenko, A., Zhai, M., Venkateswaran, A., … Ghosal, D. (2004). Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science (New York, N.Y.), 306(5698), 1025-1028. https://doi.org/10.1126/science.1103185

Davey, M. E., & O'Toole, G. A. (2000). Microbial biofilms: from ecology to molecular genetics. Microbiology and Molecular Biology Reviews : MMBR, 64(4), 847-867. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=99016&tool=pmcentrez&rendertype=abstract

https://doi.org/10.1128/MMBR.64.4.847-867.2000

E., G., E., J., D., P., & P., F. (2001). DNA protection mechanisms are not involved in the radioresistance of the hyperthermophilic archaea Pyrococcus abyssi and P. furiosus. Molecular Genetics and Genomics, 266(1), 72-78. https://doi.org/10.1007/s004380100520

Ferreira, A. C., Nobre, M. F., Moore, E., Rainey, F. A., Battista, J. R., & da Costa, M. S. (1999). Characterization and radiation resistance of new isolates of Rubrobacter radiotolerans and Rubrobacter xylanophilus. Extremophiles, 3(4), 235-238. https://doi.org/10.1007/s007920050121

Hardie, S. M. L., & McKinley, I. G. (2014). Fukushima remediation: status and overview of future plans. Journal of Environmental Radioactivity, 133, 75-85. https://doi.org/10.1016/j.jenvrad.2013.08.002

Heydorn, A., Nielsen, A. T., Hentzer, M., Sternberg, C., Givskov, M., Ersbøll, B. K., & Molin, S. (2000). Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology (Reading, England), 146 ( Pt 1, 2395-2407. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11021916

https://doi.org/10.1099/00221287-146-10-2395

Ierusalimska, L. F., Korchak, G. I., & Grigorieva, L. V. (1999). Peculiarities of soil microbial cenoses under prolonged chronic radionuclide contamination. Hyg. Populat. Areas, 3, 125-136.

Igwe, J. C., Nnorm, I. C., & Gbaruko, B. C. (2005). Kinetics of radionuclides and heavy metals behaviour in soils: Implications for plant growth. African Journal of Biotechnology, 4(1541-1547), 13. Retrieved from http://www.academicjournals.org/article/article1382016040_Igwe et al.pdf

Javaherdashti, R. (2011). Impact of sulphate-reducing bacteria on the performance of engineering materials. Applied Microbiology and Biotechnology, 91(6), 1507-1517.

https://doi.org/10.1007/s00253-011-3455-4

Karatan, E., & Watnick, P. (2009). Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiology and Molecular Biology Reviews : MMBR, 73(2), 310-347. https://doi.org/10.1128/MMBR.00041-08

Katata, G., Terada, H., Nagai, H., & Chino, M. (2012). Numerical reconstruction of high dose rate zones due to the Fukushima Dai-ichi Nuclear Power Plant accident. Journal of Environmental Radioactivity, 111, 2-12. https://doi.org/10.1016/j.jenvrad.2011.09.011

Koch-Steindl, H., & Pröhl, G. (2001). Considerations on the behaviour of long-lived radionuclides in the soil. Radiation and Environmental Biophysics, 40(2), 93-104. https://doi.org/10.1007/s004110100098

Kopteva, Z. P., Zanina, V. V., & Kozlova, I. A. (2005). Microbial Corrosion of Protective Coatings. Surface Engineering, 20(4), 275-280. https://doi.org/10.1179/026708404225016463

Kopteva, Z. P., Zanina, V. V., Kozlova, I. A., & Andreyuk, K. I. (2002). Soil aggressiveness influence on the deterioration of protective insulating coatings. Materials and Corrosion, 53(2), 98-102. https://doi.org/10.1002/1521-4176(200202)53:2<98::AID-MACO98>3.0.CO;2-Q

Korogodin, V. I., & Krasavin, E. A. (1982). Factors determining differences in biological effectiveness of ionizing radiations possessing different physical characteristics. Retrieved from http://inis.iaea.org/Search/search.aspx?orig_q=RN:14758208

Kortov, V., & Ustyantsev, Y. (2013). Chernobyl accident: Causes, consequences and problems of radiation measurements. Radiation Measurements, 55, 12-16. https://doi.org/10.1016/j.radmeas.2012.05.015

Lee, A. K., & Newman, D. K. (2003). Microbial iron respiration: impacts on corrosion processes. Applied Microbiology and Biotechnology, 62(2-3), 134-139. https://doi.org/10.1007/s00253-003-1314-7

Makino, H., Hioki, K., Umeki, H., Takase, H., & I.G., M. (2011). Knowledge management for radioactive waste disposal: moving from theory to practice. International Journal of Nuclear Knowledge Management, (5), 93-110. Retrieved from http://inderscience.metapress.com/content/m866803kx1w1l7u7/

https://doi.org/10.1504/IJNKM.2011.040157

Mavromatis, K., Ivanova, N., Barry, K., Shapiro, H., Goltsman, E., McHardy, A. C., … Kyrpides, N. C. (2007). Use of simulated data sets to evaluate the fidelity of metagenomic processing methods. Nature Methods, 4(6), 495-500. https://doi.org/10.1038/nmeth1043

Mezgheni, E., Vachon, C., & Lacroix, M. (2000). Bacterial use of biofilms cross-linked by gamma irradiation. Radiation Physics and Chemistry, 58(2), 203-205.

https://doi.org/10.1016/S0969-806X(00)00267-X

Mikami, S., Maeyama, T., Hoshide, Y., Sakamoto, R., Sato, S., Okuda, N., … Saito, K. (2014). The air dose rate around the Fukushima Dai-ichi Nuclear Power Plant: its spatial characteristics and temporal changes until December 2012. Journal of Environmental Radioactivity. https://doi.org/10.1016/j.jenvrad.2014.08.020

Møller, A. P., & Mousseau, T. A. (2006). Biological consequences of Chernobyl: 20 years on. Trends in Ecology & Evolution, 21(4), 200-207. https://doi.org/10.1016/j.tree.2006.01.008

Moshynets, O., Boretska, M., & Spiers, A. J. (2013). From Winogradsky's column to contemporary research using bacterial microcosms. Retrieved from https://repository.abertay.ac.uk/jspui/handle/10373/1449

Niedrée, B., Berns, A. E., Vereecken, H., & Burauel, P. (2013). Do Chernobyl-like contaminations with 137Cs and 90Sr affect the microbial community, the fungal biomass and the composition of soil organic matter in soil? Journal of Environmental Radioactivity, 118, 21-29. https://doi.org/10.1016/j.jenvrad.2012.11.007

O'Toole, G., Kaplan, H. B., & Kolter, R. (2000). Biofilm formation as microbial development. Annual Review of Microbiology, 54, 49-79. https://doi.org/10.1146/annurev.micro.54.1.49

Pareniuk, O. J., Moshynets, O. V., Tytova, L. V., & Levchuk, S. E. (2013). Qualitative composition of dominating forms of microorganisms isolated from radionuclide contaminated soil and their ability to accumulate 137Cs. Microbiol. J, 75(1), 33-40.

Petridou, E., Trichopoulos, D., Dessypris, N., Flytzani, V., Haidas, S., Kalmanti, M., … Tzortzatou, F. (1996). Infant leukaemia after in utero exposure to radiation from Chernobyl. Nature, 382(6589), 352-353. https://doi.org/10.1038/382352a0

Romanovskaia, V. A., Sokolov, I. G., Rokitko, P. V, & Chernaia, N. A. (1998). [Ecological consequences of radioactive pollution for soil bacteria within the 10-km region around the Chernobyl Atomic Energy Station]. Mikrobiologiia, 67(2), 274-280. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9662700

Serdiuk, A. M., Korchak, G. I., Grigorieva, L. V., Bey, T. V., Ierusalimska, L. F., Karachov, I. I., & Antomonov, M. Y. (1997). Ecological and microbiological changes in radionuclides contaminated soil. Environm. and Health, (3), 54-57.

Sinha, N., Sidhu, J., Barta, J., Wu, J., & Cano, M. P. (Eds.). (2012). Handbook of Fruits and Fruit Processing (2nd ed.). Retrieved from https://books.google.com/books?id=Vu8gsgLeW-YC&pgis=1

https://doi.org/10.1002/9781118352533

Witkin, E. M. (1947). Genetics of Resistance to Radiation in ESCHERICHIA COLI. Genetics, 32(3), 221-248. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1209375&tool=pmcentrez&rendertype=abstract

Downloads

Published

2020-10-27

Issue

Section

Biology, biotechnology, ecology