Нетрадиційні джерела протеїну у годівлі африканського сома Clarias Gariepinus

Автор(и)

DOI:

https://doi.org/10.31548/dopovidi6(106).2023.010

Ключові слова:

аквакультура, годівля риб, африканський сом, Clarias gariepinus, комбікорми, нетрадиційні джерела протеїну

Анотація

Аквакультура є однією з галузей у світі, що найбільш швидко розвивається. Вона постачає половину рибної продукції, яка щорічно споживається у світі. Тому майбутній світовий попит можна задовольнити лише за рахунок розширення та інтенсифікації виробництва продукції аквакультури, що у свою чергу, потребує збільшення виробництва кількості повнораціонних комбікормів. Це спонукає до необхідності дедалі частіше використовувати альтернативні кормові інгредієнти для забезпечення значної потреби риб у протеїні та енергії, що з одного боку є викликом для виробників кормів, а з іншого актуальною темою для дослідників. Нині нажаль, не достатньо досліджень стосовно нових кормів для риби, особливо щодо можливості використання нетрадиційних джерел протеїну у комбікормах. Як відомо, одним із альтернативних способів забезпечення високої продуктивності та зниження собівартості продукції аквакультури є заміна рибного борошна більш дешевим рослинним протеїном. Основною проблемою є збереження його біологічної цінності. Рослинний білок відрізняється нижчим вмістом окремих амінокислот, зокрема незамінних, а потреба риби у них у кілька разів перевищує потребу теплокровних тварин. Отже, така заміна не повинна призвести до зниження біологічної цінності раціону. У статті висвітленні узагальнені результати світових наукових досліджень, щодо можливості заміни рибного борошна різноманітними джерелами протеїну у комбікормах для африканського сома Clarias gariepinus. Застосування альтернативних джерел білка та заміна ними дефіцитного та досить вартісного рибного борошна, зараз поступово набуває актуальності в галузі аквакультури.

Посилання

Abdel-Warith, A.-W.A., Younis, E.-S. M.I., & Al-Asgah, N.A. (2016). Potential use of green macroalgae Ulva lactuca as a feed supplement in diets on growth performance, feed utilization and body composition of the African catfish, Clarias gariepinus. Saudi Journal of Biological Sciences, 23(3), 404-409. https://doi.org/10.1016/j.sjbs.2015.11.010

Al-Asgah, N.A., Younis, E.-S.M., Abdel-Warith, A.-W.A., & Shamlol, F.S. (2016). Evaluation of red seaweed Gracilaria arcuata as dietary ingredient in African catfish, Clarias gariepinus. Saudi Journal of Biological Sciences, 23(2), 205-210. https://doi.org/10.1016/j.sjbs.2015.11.006

Ali, M.Z. (2001). Dietary protein and energy interactions in African catfish, Clarias gariepinus (Burchell, 1822). Doctoral dissertation, University of Stirling, 273 pp.

Ali, M.Z., & Jauncey, K. (2005). Effect of dietary lipid to carbohydrate ratios in body composition, digestive enzyme activities and blood plasma components in African catfish, Clarias gariepinus (Burchell, 1822). Journal of Aquaculture in the Tropics, 20(1), 57-70.

Amaya, E., Davis, D.A., & Rouse, D.B. (2007). Alternative diets for the Pacific white shrimp Litopenaeus vannamei. Aquaculture, 262 (2-4), 419-425. https://doi.org/10.1016/j.aquaculture.2006.11.001

Amisah, S., Adjei-Boateng, D., & Afianu, D. (2008). Effects of bamboo substrate and supplementary feed on growth and production of the African catfish, Clarias gariepinus. Journal of Applied Sciences and Environmental Management, 12(2), 25-28. DOI:10.4314/jasem.v12i2.55521

Antony, U., & Chandra, T.S. (1998). Antinutrient reduction and enhancement in protein, starch and mineral availability in fermented flour of finger millet (Eleusine coracana). Journal of Agricultural and Food Chemistry, 46(7), 2578-2582. https://doi.org/10.1021/jf9706639

Anvo, M.P.M., Aboua, B.R.D., Compaore., I, Sissao, R., Zoungrana-kabore, C.Y., Kouamelan, E.P., & Toguyeni, A. (2017). Fish meal replacement by Cirina butyrospermi caterpillar’s meal in practical diets for Clarias gariepinus fingerlings. Aquaculture Research, 48(4), 5243-5250. https://doi.org/10.1111/are.13337

Anvo, M.P.M., Toguyéni, A., Otchoumou, A.K., Zoungrana-Kaboré, C.Y., & Kouamelan, E.P. (2016). Evaluation of Cirina butyrospermi caterpillar’s meal as an alternative protein source in Clarias gariepinus (Burchell, 1822) larvae feeding. International Journal of Fisheries & Aquatic Studies, 4(6), 88-94.

Atanda, A.N. (2012). Fish species diversification in Agriculture for the success of the agriculture transformation agenda: The role of tilapia production; Fisheries Society of Nigeria (FISON) annual public lecture, Lagos, Nigeria.

Azarm, H.M., & Lee, S.M. (2014). Effects of partial substitution of dietary fish meal by fermented soybean meal on growth performance, amino acid and biochemical parameters of juvenile black sea bream, Acanthopagrus schlegeli. Aquaculture Research, 45, 994-1003. https://doi.org/10.1111/are.12040

Bonaldo, A., Luca, P., Luciana, M., Rubina, S., Ramon, F., et al. (2011). Increasing dietary plant proteins affects growth performance and ammonia excretion but not digestibility and gut histology in turbot (Psetta maxima) juveniles. Aquaculture, 318(1), 101-108. https://doi.org/10.1016/j.aquaculture.2011.05.003

Bruton, M.N. (1979). The food and feeding behavior of Clarias gariepinus (Pisces: Clariidae) in Lake Sibaya, South Africa, with emphasis on its role as a predator of cichlids. Transactions of the Zoological Society of London, 35, 47-114. https://doi.org/10.1111/j.1096-3642.1979.tb00057.x

Cheng, W., Chiu, C.S., Guu, Y.K., Tsai, S.T., & Liu, C.H. (2013). Expression of recombinant phytase of Bacillus subtilis E20 in Escherichia coli HMS 174 and improving the growth performance of white shrimp, Litopenaeus vannamei, juveniles by using phytase-pretreated soybean meal - containing diet. Aquaculture Nutrition, 19, 117-127. https://doi.org/10.1111/j.1365-2095.2012.00946.x

Clay, D. (1979). Population biology, growth and feeding of African catfish (Clarias gariepinus) with special reference to juveniles and their importance in fish culture. Archiv fur Hydrobiologie, 87(4), 453-482.

Conceição, L.E.C, Ozório, R.O.A., Suurd, E.A., & Verreth, J.A.J. (1998). Amino acid profiles and amino acid utilization in larval African catfish (Clarias gariepinus): Effects of ontogeny and temperature. Fish Physiology and Biochemistry, 19, 43-48.

Dada, A. (2017). Use of fluted pumpkin (Telfairia occidentalis) leaf powder as feed additive in African catfish (Clarias gariepinus) fingerlings. International Journal of Applied Animal Research, 45(1), 566-569. https://doi.org/10.1080/09712119.2016.1233108

Daniel, N. (2017). Status of aquaculture with respect to nutrition and feed. International Journal of Fisheries & Aquatic Studies, 5(1), 333-345.

Dauda, A.B., Folorunso, L.A., & Dasuki, A. (2013). Use of Probiotics for Sustainable Aquaculture Production in Nigeria. Journal of Agriculture & Social Research, 13(2), 35-45.

Davies, O.A., & Ezenwa, N.C. (2010). Groundnut cake as alternative protein source in the diet of Clarias gariepinus fry. International Journal of Natural Sciences, 1(1), 73-76.

De Francesco, M., Parisi, G., Médale, F., Lupi, P., Kaushik, S.J., & Poli, B.M. (2004). Effect of long-term feeding with a plant protein mixture-based diet on growth and body/fillet quality traits of large rainbow trout (Oncorhynchus mykiss). Aquaculture, 236(1), 413-429. https://doi.org/10.1016/j.aquaculture.2004.01.006

Dienye, H.E., & Olumuji, O.K. (2014). Growth performance and haematological response of African mud catfish Clarias gariepinus fed dietary levels of Moringa oleifera leaf meal. Net Journal of Agricultural Science, 2(2), 79-88.

Engin, K., & Carter, C.G. (2005). Fish meal replacement by plant and animal by‐products in diets for the Australian short‐finned eel, Anguilla australis australis (Richardson). Aquaculture Research, 36(5), 445-454. https://doi.org/10.1111/j.1365-2109.2004.01224.x

Enyidi, U.D., Pirhonen, J., & Vielma, J. (2014). Effects of sesame seed meal and bambaranut meal on growth, feed utilization and body composition of juvenile African catfish Clarias gariepinus. Iranian Journal of Fisheries Sciences, 13(4), 998-1013.

Esakkiraj, P., Immanuel, G., Sowmya, S.M., Iyapparaj, P., & Palavesam, A. (2009). Evaluation of protease-producing ability of fish gut isolate Bacillus cereus for aqua feed. Food Bioprocess Technology, 2(4), 383-390.

Espe, M., Lemme, A., Petri, A., & El-Mowafi, A. (2007). Assessment of lysine requirement for maximal protein accretion in Atlantic salmon using plant protein diets. Aquaculture, 263(1), 168-178. https://doi.org/10.1016/j.aquaculture.2006.10.018

Fagbenro, O.A., & Davies, S.J. (2004). Use of high percentages of soy protein concentrate as fish meal substitute in practical diets for African catfish, Clarias gariepinus (Burchell 1822). Journal of Applied Aquaculture, 16(1-2), 113-124. https://doi.org/10.1300/J028v16n01_10

FAO (2016). The State of World Fisheries and Aquaculture-Contributing to food security and nutrition for all. Fisheries and Aquaculture Department, Food and Agriculture Organization of the United Nations, Rome pp: 200.

FAO (2017). Fishery and Aquaculture Statistics. Global aquaculture production 1950-2015 (Fish stat J). In: FAO Fisheries and Aquaculture Department. Rome.

FAO (2022). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome, FAO. 266 p. https://doi.org/10.4060/cc0461en

Gemede, H. F., & Ratta, N. (2014). Anti-nutritional factors in plant foods: potential health benefits and adverse effects. International Journal of Nutrition and Food Sciences, 3(4), 284-289.

Goda, A.M.A.S., Saad, A., Wafa, M., & Sharawy, Z. (2014). Complete substitution of dietary wheatbran with Duckweed Lemna species supplemented with exogenous digestive enzymes for freshwater prawn, Macrobrachium rosenbergii (De Man 1879) postlarvae. In: The International Conference and Exposition of Aquaculture Europe 2014. Kursaal in San Sebastian, SPAIN.

Habtamu F.G., & Negussie, R. (2014). Antinutritional factors in plant foods: Potential health benefits and adverse effects. International Journal of Nutrition & Food Sciences, 3, (4), 284-289. DOI: 10.11648/j.ijnfs.20140304.18

Hamid, H., Thakur, N.S., & Pradeep, K. (2017). Anti-nutritional factors, their adverse effects and need for adequate processing to reduce them in food. AgricINTERNATIONAL, 4(1), 56-60. DOI:10.5958/2454-8634.2017.00013.4

Hansen, A.C., Hemre, G., Karlsen, ., Koppe, W., & Rosenlund, G. (2011). Do plant‐based diets for Atlantic cod (Gadus morhua L.) need additions of crystalline lysine or methionine? Aquaculture Nutrition, 17(2), 362-371. https://doi.org/10.1111/j.1365-2095.2010.00770.x

Henken, A.M., Machiels, M.A.M., Dekker, W., & Hogendoorn, H. (1986). The effect of dietary protein and energy content on growth rate and feed utilization of the African catfish, Clarias gariepinus (Burchell 1822). Aquaculture, 58(1-2), 55-74. https://doi.org/10.1016/0044-8486(86)90156-0

Huang, K., & Nitin, N. (2019). Edible bacteriophage based antimicrobial coating on fish feed for enhanced treatment of bacterial infections in aquaculture industry. Aquaculture, 502, 18-25. https://doi.org/10.1016/j.aquaculture.2018.12.026

Irabor, A.E., Ekokotu, P.A., & Nwachi, O.F. (2016). Effects of pawpaw seed powder as an additive on growth of catfish fingerlings reared in an indoor tank. Journal of Northeast Agricultural University, 23 (4), 55-60. https://doi.org/10.1016/S1006-8104(17)30007-7

Jiang, Y., Zhao, P.F., Lin, S.M., Tang, R.J., Chen, Y.J., & Luo, L. (2018). Partial substitution of soybean meal with fermented soybean residue in diets for juvenile largemouth bass, Micropterus salmoides. Aquaculture Nutrition, 24(5), 1213-1222. https://doi.org/10.1111/anu.12659

Jimoh, W.A., & Aroyehun H.T. (2011). Evaluation of cooked and mechanically defatted sesame (Sesamum indicum) seed meal as a replacer for soybean meal in the diet of African catfish (Clarias gariepinus). Turkish Journal of Fisheries and Aquatic Sciences, 11(2), 185-190. DOI: 10.4194/trjfas.2011.0202

Kerdchuen, K. (1992). L'alimentation artificielle d'un silure africain, Heterobranchus longifilis (Teleostei: Clariidae). Incidence du mode d'alimentation et première estimation des besoins nutritionnels. (Doctoral dissertation University Paris). Dissertation Abstract International, 6, 182 pp.

Khan, A., & Ghosh, K. (2012). Evaluation of phytase production by fish gut bacterium, Bacillus subtilis for processing of Ipomea aquatic leaves as probable aquafeed ingredient. Journal of Aquatic Food Product Technology, 22(5), 508-519. https://doi.org/10.1080/10498850.2012.669032

Lund, I., Dalsgaard, J., Rasmussen, H.T., Holm, J., & Jokumsen, A. (2011). Replacement of fish meal with a matrix of organic plant proteins in organic trout (Oncorhynchus mykiss) feed, and the effects on nutrient utilization and fish performance. Aquaculture, 321(3), 259-266. https://doi.org/10.1016/j.aquaculture.2011.09.028

National Research Council (2011). Nutrient Requirements of Fish and Shrimp. Washington DC: National Academy Press, 392 pp.

Ng, W.K., Liew, F.L., Ang, L.P., & Wong, K.W. (2001). Potential of mealworm (Tenebrio molitor) as an alternative protein source in practical diets for African catfish, Clarias gariepinus. Aquaculture Research, 32(1), 273–280. https://doi.org/10.1046/j.1355-557x.2001.00024.x

Ng, W.K., Lim, P.K., & Boey, P.L. (2003). Dietary lipid and palm oil source affects growth, fatty acid composition and muscle alpha-tocopherol concentration of African catfish, Clarias gariepinus. Aquaculture, 215(1-4), 229-243. https://doi.org/10.1016/S0044-8486(02)00067-4

Ng, W.K., Wang, Y., Ketchimenin, P. & Yuen, K.H. (2004). Replacement of dietary fish oil with palm fatty acid distillate elevates tocopherol and tocotrienol concentrations and increases oxidative stability in the muscle of African catfish, Clarias gariepinus. Aquaculture, 233(1-4), 423-437. https://doi.org/10.1016/j.aquaculture.2003.10.013

Ochang, S.N., Ugbor, O.N., & Ezeonwu, K.C. (2014). Effect of replacement of soybean meal with beniseed (Sesamum indicum) meal on the growth and haematology of African catfish (Clarias gariepinus). Nigerian Journal of Fisheries, 11(1-2), 762-769.

Oké, V., Abou, Y., Adité, A., & Kabré, J.A.T. (2016). Growth performance, feed utilization and body composition of Clarias gariepinus (Burchell 1822) fed marine fish viscera-based-diet in earthen ponds. Fish Aquaculture, 7(4), 2-7. DOI:10.4172/2150-3508.1000183

Pantazis, P.A. (2005). Protein to energy ratios in African catfish fed purified diets is Clarias gariepinus an ordinary carnivore. Archives of Polish Fisheries, 13(2), 157-170.

Peres, H., & Oliva Teles, A. (2005). The effect of dietary protein replacement by crystallinne amino acid on growth and nitrogen utilization of turbot Scophthalmus maximus juveniles. Aquaculture, 250(3-4), 755-764. https://doi.org/10.1016/j.aquaculture.2005.04.046

Pillay, T.V.R. (1990). Aquaculture Principles and Practices. Oxford: Fishing News Books.

Raji, A.A., Junaid, Q.O., Oke, M.A., Taufek, N.H.M., Muin, H., Bakar, N.H.A., Alias, Z., Milow, P., Simarani, K., & Razak, S.A. (2019). Dietary Spirulina platensis and Chlorella vulgaris effects on survival and haemato-immunological responses of Clarias gariepinus juveniles to Aeromonas hydrophila infection. AACL Bioflux, 12(5), 1559-1577.

Ramachandran, S., & Ray, A.K. (2007). Nutritional evaluation of fermented black gram (Phaseolus mungo) seed meal in compound diets for rohu, Labeo rohita (Hamilton), fingerlings. Journal of Applied Ichthyology, 23(1), 74-79. https://doi.org/10.1111/j.1439-0426.2006.00772.x

Richter, C.J.J. (1976). The African catfish, Clarias lazera (C. and V.), a new possibility for fish culture in tropical regions? Miscellaneous papers / Landbouwhogeschool Wageningen, 13, 51-71.

Sahu, A.K., Sahoo, S.K., & Giri, S.S. (2002). Efficacy of water hyacinth compost in nursery ponds for larval rearing of Indian major carp, Labeo rohita. Bioresource Technology, 85(3), 309-311. https://doi.org/10.1016/S0960-8524(02)00100-1

Schoonbee, H.J. (1969). Notes on the food habits of fish in Lake Baberspan, western Transvaal, South Africa. Verhandlungen der Internationalen Vereinigung fur Theoretische und Angewandte Limnologie, 17(2), 689-701. https://doi.org/10.1080/03680770.1968.11895904

Sheikhlar, A. Goh, Y.M., Alimon, R., & Ebrahimi, M. (2017). Antioxidative effects of mulberry foliage extract in African catfish diet. Aquaculture Research, 48(8), 4409-4419. https://doi.org/10.1111/are.13266

Shimeno, S., Mima, T., Yamamoto, O., & Ando, Y. (1993). Effects of fermented defatted soybean meal in diet on the growth, feed conversion, and body composition of juvenile yellowtail. Nippon Suisan Gakkaishi. 59(11), 1883-1888.

Shiu, Y.L., Wong, S.L., Guei, W.C., Shin, Y.C., & Liu, C.H. (2013). Increase in the plant protein ratio in the diet of white shrimp, Litopenaeus vannamei (Boone), using Bacillus subtilis E20-fermented soybean meal as a replacement. Aquaculture Research, 46(2), 382-394. https://doi.org/10.1111/are.12186

Soetan K., & Oyewol O. (2009). The need for adequate processing to reduce the antinutritional factors in plants used as human foods and animal feeds: A review. African Journal of Food Science, 3(9), 223-232.

Solomon, S.G., Ataguba, G.A., & Itodo, G.E. (2017). Performance of Clarias gariepinus fed dried brewer’s yeast (Saccharomyces cerevisiae) slurry in replacement for soybean meal. Journal of Nutrition & Metabolism, 2017(1), 1-8. DOI: 10.1155/2017/8936060

Solomon, S.G., Okomoda, V.T., & Oda, S.O. (2017). Nutritional value of toasted pigeon pea, Cajanus cajan seed and its utilization in the diet of Clarias gariepinus (Burchell, 1822) fingerlings. Aquaculture Reports, 7,34–39. https://doi.org/10.1016/j.aqrep.2017.05.005

Solomon, S.G., Okomoda, V.T., & Onah, R.E. (2017). Nutritional profile of soaked Cajanus cajan (L.) Millsp. and its utilization as partial replacement for soybean meal in the diet of Clarias gariepinus (Burchell, 1822) fingerlings. Journal of Applied Ichthyology, 33(3), 450–457. https://doi.org/10.1111/jai.13280

Soosean, C., Marimuthu, K., Sudhakaran, S., & Xavier, R. (2010). Effect of mangosteen (Garcinia mangostana L.) extracts as a feed additive on growth and hematological parameters of African catfish (Clarias gariepinus) fingerlings. European Review for Medical & Pharmacological Sciences, 14(7), 605-611.

Spataru, P., Viveen, W., & Gophen, M. (1987). Food composition of Clarias gariepinus (Clarias lazera) (Cypriniformes, Clariidae) in Lake Kinneret (Israel). Hydrobiologia, 144, 77-82.

Sun, M., Kim, Y.C., Okorieo, O.E., Lee, S., Devnath, S., Yoo, G., Jo, Y.K., & Bai, S.C. (2007). Use of fermented fisheries by-products and soybean curd residues mixture as a fish meal replacer in diets of juvenile olive flounder, Paralichthys olivaceus. Journal of World Aquaculture Society, 38(4), 543-549. https://doi.org/10.1111/j.1749-7345.2007.00128.x

Taufek, N.M., Muin, H., Raji, A. A., Md Yusof, H., Alias, Z., & Razak, S.A. (2017). Potential of field crickets meal (Gryllus bimaculatus) in the diet of African catfish (Clarias gariepinus). Journal of Applied Animal Research, 46(1), 541–546. https://doi.org/10.1080/09712119.2017.1357560

Tiamiyu, L.O., Ataguba, G.A., & Jimoh, J.O. (2013). Growth Performance of Clarias gariepinus Fed Different Level of Agama agama meal diets. Pakistan Journal of Nutrients, 12(5), 510-515. DOI:10.3923/pjn.2013.510.515

Uchechukwu, E., & Gift, O. (2019). Effects of Substitution of Fishmeal with Bambaranut Meal on Growth and Intestinal Microbiota of African Catfish (Clarias gariepinus). Aquaculture Studies, 19(1), 09-23. DOI:10.4194/2618-6381-v19_1_02

Uchechukwu, E., Juhani, P., Juhani, K., & Jouni, V. (2017). Effect of feed protein: Lipid ratio on growth parameters of African catfish, Clarias gariepinus after fish meal substitution in the diet with bambaranut (Voandzeia subterranea) meal and soybean (Glycine max) meal. Fishes, 2(1), 2-11. DOI:10.3390/fishes2010001

Uys, W. (1989). Aspects of the nutritional physiology and dietary requirements of juvenile and adult sharptooth catfish, Clarias gariepinus (Pisces; Clariidae). (Doctoral dissertation Rhodes University) Grahamstown, South Africa, Rhodes University, 190 pp.

Uys, W., & Hecht, T. (1987). Assays on the digestive enzymes of sharptooth catfish, Clarias gariepinus (Pisces: Clariidae). Aquaculture, 63(1-4), 301-313. https://doi.org/10.1016/0044-8486(87)90080-9

Uys, W., Hecht, T., & Walters, M. (1987). Changes in digestive enzyme activities of Clarias gariepinus (Pisces: Clariidae) after feeding. Aquaculture, 63 (1-4), 243-250. https://doi.org/10.1016/0044-8486(87)90076-7

Van Weerd, J.H. (1995). Nutrition and growth in Clarias species – a review. Aquatic Living Resources, 8(4), 395–401. https://doi.org/10.1051/alr:1995046

Welker, T., Barrows, F, Overturf, K., Gaylord, G., & Sealey, W. (2016). Optimizing zinc supplementation levels of rainbow trout (Oncorhynchus mykiss) fed practical type fishmeal‐and plant‐based diets. Aquaculture nutrition, 22(1), 91-108. https://doi.org/10.1111/anu.12232

Wilson, R.P., & Moreau, Y. (1996). Nutrient requirements of catfish (Siluroidei). Aquatic Living Resources, 9(5), 103-111. https://doi.org/10.1051/alr:1996045

Yamamoto, T., Iwashita, Y., Matsunari, H., Sugita, T., Furuita, H., Akimoto, A., Okamatsu, K., & Suzuki, N. (2010). Influence of fermentation conditions for soybean meal in a non-fish meal diet on the growth performance and physiological condition of rainbow trout Oncorhynchus mykii. Aquaculture, 309(1-4), 173–180. DOI:10.1016/j.aquaculture.2010.09.021

Yun, B., Ai, Q., Mai, K., Xu, W., Qi, G., & Luo, Y. (2012). Synergistic effects of dietary cholesterol and taurine on growth performance and cholesterol metabolism in juvenile turbot (Scophthalmus maximus L.) fed high plant protein diets. Aquaculture, 324, 85-91. https://doi.org/10.1016/j.aquaculture.2011.10.012

Завантаження

Опубліковано

2023-12-20

Номер

Розділ

Технологія виробництва і переробки продукції тваринництва