The influence of different rootstock hybrids on fruit quality of the diploid watermelon hybrid yukon F1 and the triploid watermelon hybrid kidman F1 in the conditions of the Left Bank Forest Steppe of Ukraine

Authors

  • A. O. Galaguria Kharkiv State University of Biotechnology , Харківський державний біотехнологічний університет

DOI:

https://doi.org/10.31548/dopovidi2022.06.003

Keywords:

Citrullus lanatus, grafted plants, Lagenaria, C.maxima x C.moschata, fruit quality

Abstract

Study of the influence of various commercial rootstocks on the quality of diploid and triploid watermelon fruits in the conditions of the Left Bank Forest Steppe of Ukraine. Methods. Laboratory, mathematical and statistical - statistical processing of the results of the experiment. The results. Based on the results of the research conducted in 2019-2021, we see that grafting on bottle gourd rootstocks of the hybrid Pelops F1 and the interspecific hybrid Cobalt F1 is used as an effective option for combating diseases, increasing yield, and resistance to abiotic factors in the production of watermelons; however, this process may affect fruit quality parameters. The aim of this study was to determine the effect of different rootstocks on vitamin C content, total soluble solids, total sugar and nitrate content in Kidman F1 and Yukon F1 watermelon hybrids at harvest. The study determined the influence of two rootstocks on some qualitative characteristics of watermelon fruits. The results showed that the quality parameters of the samples varied depending on the combination of the watermelon hybrid and the rootstock hybrid. Inoculation did not significantly affect vitamin C content and was lower than that of control plants in both diploid and triploid watermelons. The highest content of vitamin C was in Yukon F1 watermelon (in control) - 8.72 mg/100 g, and the combination of Yukon F1 with Cobalt F1 8.65 mg/100 g and Yukon F1 with Pelops F1 8.37 mg/100 g, respectively. Grafted watermelon plants on Cobalt F1 rootstock had the highest total soluble solids content in the test, which was -10.88% on Kidman F1, which was 1.5% more than the control, and 10.21% on Yukon F1, which was 1.06% more than the control, respectively. The highest content of total sugar was observed in the combination of Yukon F1 and Cobalt F1 8.84%, which is 1.71% more than the control, and the combination of Kidman F1 and Pelops F1 8.69%, which is 0.79% more than the control plants respectively. The content of nitrates was below the MPC (60 mg/kg) and ranged from 21.4 to 27.7 mg/kg. The lowest nitrate content was observed on the combination of Cobalt F1 rootstock and Kidman F1 watermelon 21.4 mg/kg, and on Yukon F1 watermelon 23.9 mg/kg, respectively, which is not significantly different from the control plants. Conclusions. The conducted studies indicate the expediency of using different rootstocks for diploid and triploid watermelons to improve fruit quality in the conditions of the Left Bank Forest Steppe of Ukraine. Inoculation provides a significant increase in the content of dry soluble matter, total sugar, and a lower content of nitrates, but inoculation negatively affected the content of vitamin C, especially in triploid watermelon. Comparing the two rootstocks, over three years of testing, we can conclude that grafted watermelon plants on the Cobalt F1 hybrid rootstock had a higher content of dry matter, total sugar, and lower nitrate content than on the Pelops F1 rootstock. The feasibility of using grafted plants in modern growing conditions has been proven.

References

Alan, O., Özdemir, N., Günen, Y. (2007). Effect of grafting on watermelon plant growth, yield and quality. Journal of Agronomy, 6(2), 362-365. http://dx.doi.org/10.3923/ja.2007.362.365.

Alexopoulos, A. A, Kondylis, A, Passam, H. (2007). Fruit yield and quality of watermelon in relation to grafting. J Food Agric Environ; 5: 178-9. [In English].

Bekhradi, F., Kashi, A., Delshad, M., (2011). Effect of three cucurbit rootstocks on vegetative and yield of И?Charleston Grey’ watermelon. Int. J. Plant Prod. 5(2), 105-109. https://dx.doi.org/10.22069/ijpp.2012.724 [In English].

Bletsos, F., & Passam, H. C. (2010). Grafting: an environmentally friendly technique to overcome soil-borne diseases and improve the out of season production watermelon, cucumber and melon. In A. N. Sampson (Ed.), Horticulture in the 21st Century (pp. 81-120). New York: Nova Science. [In English].

Bruton, B. D., Fish, W. W., Roberts, W., Popham, T. W. (2009). The Influ¬ence of rootstock selection on fruit quality attributes of watermelon. Open Food Sci. J. 3, 15-34 http://dx.doi.org/10.2174/1874256400903010015 [In English].

Bondarenko H. L. (2001) Metodyka doslidnoi spravy v ovochivnytstvi ta bashtannytstvi [Methodology of experimental work in vegetable and melon] Kh: Osnova. 369 s. [In Ukrainian].

Colla, G., Rouphael, Y., Cardarelli, M., Rea, E. (2006) Effect of salinity on yield, fruit quality, leaf gas exchange, and mineral composition of grafted watermelon plants. Hortic Sci; 41: 622-7. https://doi.org/10.21273/HORTSCI.41.3.622 [In English].

Cushman, K. E., Huan, J. (2008). Performance of four triploid watermelon cultivars grafted onto five rootstock genotypes: yield and fruit quality under commercial growing conditions. Acta Hortic.782, 335-341. https://doi.org/10.17660/ActaHortic.2008.782.42 [In English].

Davis, A. R., Perkins-Veazie, P. (2005). Rootstock effects on plant vigor and watermelon fruit quality. Cucurbit Genet. Coop. Rep. 28, 39-42. [In English].

Davis, A. R., Penelope, P. V., Hassell, A., King, S. R., & Zhang, X. (2008a). Grafting effects on vegetable quality. HortScience, 43, 1670-1672. https://doi.org/10.21273/HORTSCI.43.6.1670 [In English].

Davis, A. R., Perkins-Veazie, P., Sakata, Y., López-Galarza, S., Maroto, J. V., Lee, S. G., Huh, Y. C., Sun, Z., Miguel, A., King, S., Cohen, R., & Lee, J. M. (2008b). Cucurbit Grafting. Critical Reviews in Plant Sciences, 27(1), 50-74. http://dx.doi.org/10.1080/07352680802053940. [In English].

(2000) DST Ukraynu 3805-98 Kavuni prodovolchi svigly. Tehnichni umovi. [DST of Ukraine 3805-98 Edible watermelons are fresh. Specifications]: Vveden. 01.01.2000. K: Yzd.oficialnoe, [In Ukrainian].

(2016) DST Ukraynu 7803:2015 Produkty pererobky ovochiv i fruktiv. Sposoby vyznachenya vitaminu C. [DST of Ukraine 7803:2015 Ukraynu Products of processing fruits and vegetables. Methods for the administration of vitamin C]: Vveden. 01.04.2016. K: Yzd.oficialnoe, [In Ukrainian].

(2009) DST Ukraynu 4948:2008 Frukty, ovochy ta product ih pereroblennya. Metody vyznachennya vmistu nytratyv. [4948:2008 Fruits, vegetables and their processing products. Methods of determination of nitrate content]: Vveden. 01.01.2009. K: Yzd.oficialnoe, [In Ukrainian].

(2017) DST Ukraynu 8402:2015 Produkty pererobky ovochiv i fruktiv. Refraktometrychnyy metod vyznachennya vmistu rozchynnykh sukhykh rechovyn [8402:2015 Products of fruit and vegetable processing. Refractometric method of determining the content of soluble solids]: Vveden. 01.07.2017. K: Yzd.oficialnoe, [In Ukrainian].

(2009) DST Ukraynu 4954:2008 Produkty pererobky ovochiv i fruktiv. Metody vyznachennya tsukriv [4954:2008 Products of fruit and vegetable processing. Methods of determination of sugars]: Vveden. 01.01.2009. K: Yzd.oficialnoe, [In Ukrainian].

Fallik, E., & Ilic, Z. (2014). Grafted vegetables – the influence of rootstock and scion on postharvest quality. Folia Horticulturae, 26(2), 79-90. http://dx.doi.org/10.2478/fhort-2014-0008. [In English].

Food Agriculture Organization of the United Nations. (2021). Available online at: http://faostat.fao.org/site/339/default.aspx (accessed February 22, 2021). [In English].

Hassell R.L., Memmott F., Liere D.G., (2008). Grafting methods for watermelon production. HortScience 43, 1677-1679. [In English].

Lee, J. M. and Oda, M. (2003). Grafting of herbaceous vegetable and ornamental crops. Hort. Rev. 28:61–124. https://doi.org/10.1002/9780470650851.ch2 [In English].

Lee, J. M., (1994). Cultivation of grafted vegetables. I.Current status, grafting methods and benefits. HortScience 29, 235-239. https://doi.org/10.4236/fns.2012.310179 [In English].

Liu, R. Q., Zhang, H. M., Xu, J. H., et al. (2003). Effects of rootstocks on growth and fruit quality of grafted watermelon. J Shanghai Jiaotong Univ Agric Sci; 21: 289-94. [In English].

Lopez-Galarza, S., San Bautista, A., Perez, D. M., et al. (2004). Effects of grafting and cytokinin-induced fruit setting on color and sugar-content traits in glasshouse-grown triploid watermelon. J Hortic Sci Biotechnol; 79: 971-6. http://dx.doi.org/10.1080/14620316.2004.11511875 [In English].

Karaca, F., Yetisir, H., Solmaz, I., Candir, E., Kurt, Ş., Sari, N., Guler, Z., (2012). Rootstock potential of Turkish Lagenaria siceraria germplasm for watermelon: plant growth yield and quality. Turk. J. Agric. For. 36, 1-11. https://doi.org/10.3906/tar-1101-1716 [In English].

King, S. R., Davis, A. R., Zhang, X., & Crosby, K. (2010). Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Scientia Horticulturae, 127(2), 106-111. http://dx.doi.org/10.1016/j. scienta.2010.08.001. [In English].

Kyriacou, M. and G. Soteriou. (2015). Quality and postharvest performance of watermelon fruit in response to grafting on interspecific cucurbit rootstocks. J. Food Qual. 38:21–29. https://doi.org/10.1111/jfq.12124 [In English].

Kyriacou, M. C., Rouphael, Y., Colla, G., Zrenner, R., & Schwarz, D. (2017). Vegetable grafting: The implications of a growing agronomic imperative for vegetable fruit quality and nutritive value. Frontiers in Plant Science, 8, 741. PMid: 28553298. https://doi.org/10.3389/fpls.2017.00741 [In English].

Louws, F. J., Rivard, C. L., Kubota, C. (2010). Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Sci. Hortic., 127, 127–146. https://doi.org/10.1016/j.scienta.2010.09.023 [In English].

Miguel, A., Maroto, J. V., San Bautista, A., Baixauli, C., Cebolla, V., Pascual, B., Lopez, S., & Guardiola, J. L. (2004). The grafting of triploid watermelon is an advantageous alternative to soil fumigation by methyl bromide for control of Fusarium wilt. Scientia Horticulturae, 103(1), 9-17. http://dx.doi.org/10.1016/j.scienta.2004.04.007 [In English].

Nawaz, M. A., Imtiaz, M., Kong, Q., Cheng, F., Ahmed, W., Huang, Y., Bie, Z. (2016). Grafting: A technique to modify ion accumulation in horticultural crops. Front. Plant Sci., 7, 1457. https://doi.org/10.3389/fpls.2016.01457 [In English].

Paris, H. S. (2015). Origin and emergence of the sweet dessert watermelon, Citrullus lanatus. Annals of Botany, 116(2), 133-148. https://doi.org/10.1093/aob/mcv077 [In English].

Qian, Q. Q., Liu, H.Y., Liu, H.Y., Zhu, Z. H. (2004). Studies on sugar metabolism and related enzymes activity during watermelon fruit development as influenced by grafting. Zhejiang Univ J Agric Life Sci; 30: 285-9. [In English].

Roberts, W., Bruton, B., Fish, W., Taylor, M., (2007). Using grafted transplants in watermelon production. In: Kelley, W.T. (ed.), Proceedings of the 2007 Southeast Regional Vegetable Conference, 33-36, Savannah, Georgia. [In English].

Rouphael, Y., Schwarz, D., Krumbein, A., & Colla, G. (2010). Impact of grafting on product quality of fruit vegetables. Scientia Horticulturae, 127(2), 172-179. http://dx.doi.org/10.1016/j.scienta.2010.09.001. [In English].

Rouphael, Y., Rea, E., Cardarelli, M., Bitterlich, M., Schwarz, D., Colla, G. (2016) Can adverse effects of acidity and aluminum toxicity be alleviated by appropriate rootstock selection in cucumber? Front. Plant Sci., 7, 1283. https://doi.org/10.3389/fpls.2016.01283 [In English].

Ryu, J.S., Choi, K.S., Lee, S.S. (1973). Effect of grafting stocks on growth, quality and yields of watermelon. J Kor Soc Hortic Sci; 13: 45-9. [In English].

Sakata, Y., T. Ohara, and M. Sugiyama. (2007). The history and present state of the grafting of cucurbitaceous vegetables in Japan. Acta Hort. 731:159–170. https://doi.org/10.17660/ActaHortic.2007.731.22 [In English].

Salam, M. A., Masum, A. S. M. H., Chowdhury, S. S., Dhar, M., Sad-Deque, A., Islam, M. R., (2002). Growth and yield of watermelon as influenced by grafting. Online J. Biol. Sci. 2, 298-299.

Schwarz D., Rouphael Y., Colla G., Venema J. H., (2010). Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Sci. Hortic. 127, 162-171. https://doi.org/10.1016/j.scienta.2010.09.016 [In English].

Soteriou, G. A., Kyriacou, M. C. (2015). Rootstock mediated effects on watermelon field performance and fruit quality characteristics. Int. J. Veg. Sci. 21, 344-362. https://doi.org/10.1080/19315260.2014.881454 [In English].

State Statistics Service [Electronic resource]. - Access mode:http://www.ukrstat.gov.ua/operativ/operativ2020/sg/ppsgk/ppsgk2020.xlsx [In Ukrainian].

Yetisir, H., Sari, N., Yucel, S., (2003). Rootstock resistance to Fusarium wilt and effect on watermelon fruit yield and quality. Phytoparasitica 31, 163-169. http://dx.doi.org/10.1007/BF02980786 [In English].

Yilmaz, S., Celik, I., Zengin, S., (2011). Combining effects of soil solarization and grafting on plant yield and soil-borne pathogens in cucumber. Int. J. Plant Prod. 5 (1), 95-104. https://dx.doi.org/10.22069/ijpp.2012.723 [In English].

Published

2022-12-29

Issue

Section

Agronomy