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Abstract. On gravitational surfaces and curves, the movement of a particle is 

determined by the force of its weight. The speed of movement along the curve in such 

cases is variable. However, in agricultural machines, there may be cases when a particle 

moves along the surface at a constant speed, for example, during the forced movement of 

soil particles along the surface of the working body. In this case, in addition to the force of 

gravity, the force of traction acts on the particle. If we consider the curves along which the 

particle will exert a constant pressure and the active force will be constant when moving 

at a constant speed, then such curves will no longer be gravitational. 

The purpose of the study is to determine a cylindrical surface that provides a 

constant force of traction or a constant amount of pressure of a material particle moving 

along it at a constant speed. 

During the research, curves providing constant pressure at a constant speed of 

particle movement and curves providing constant traction force at a constant speed of 

particle movement were considered and their comparisons were made. 

A comparison of the natural equations of the curves providing a constant pressure 

with the natural equations of the curves providing a constant traction force showed that 

these are the same curves, only with different constant coefficients. 

These curves will retain their properties only if the value of the calculated speed is 

strictly observed. This is explained by the fact that in the equations of the curves, the speed 

value is squared, so even its slight deviation from the calculated one causes a significant 

deviation of the expected results. 

Key words: cylindrical surface, material particle, speed, traction force, pressure 

 

Topicality. When designing agricultural machines, it is necessary to know the 

movement of particles on cylindrical surfaces, which is determined by the force of the 

weight of the particle and the force of traction. 
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Analysis of recent research and publications. The movement of material particles 

along gravitational surfaces is discussed in monographs [ 1, 2 ] . Since it is implied that the 

surfaces are cylindrical with a horizontal arrangement of the generators, the movement of 

particles can be studied on flat curves - orthogonal sections of these surfaces. In the 

corresponding sections of the mentioned works, such surfaces and curves are called 

gravitational surfaces, because the movement of a particle is determined by the force of its 

weight. The speed of movement along the curve in such cases is variable. However, in 

agricultural machines, there may be cases when a particle moves along the surface at a 

constant speed (for example, during the forced movement of soil particles along the 

surface of the working body [ 3 ] ). In this case, in addition to the force of gravity, another 

active force Ftg (traction force) acts on the particle. Let's find such curves when moving 

along which a particle will 1) exert a constant pressure; 2) the active force F tg will be 

constant. Obviously, such curves will no longer be gravitational. 

The purpose of the study is to determine a cylindrical surface that provides a 

constant force of traction or a constant pressure of a material particle moving along it at a 

constant speed. 

Materials and methods of research. In the research, it is necessary to consider the 

curves that provide a constant pressure at a constant speed of the particle movement and 

the curves that provide a constant traction force at a constant speed of the particle 

movement and compare them. 

Research results and their discussion. 

1. Curves providing a constant pressure at a constant speed of particle movement. 

Suppose that under the action of the force Ftg, a soil particle moves up the curve with 

a constant speed v (Fig. 1). Let's find the equation of the curve that, at a given speed v, will 

provide a constant reaction Fts of the surface, that is, a constant pressure on the surface. In 

practical terms, such a surface will wear evenly and will be less prone to soil sticking. We 

project all acting forces onto the main normal n  curves: 

,cos тсFkmvmg 2               (1) 
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where k - the curvature of the curve at this point, m - the mass of the particle, g = 

9.81 m/s 
2
. 

 

Fig. 1. Decomposition of acting forces into main normal n and tangent t  curve 

 

Let's rewrite equation (1), dividing the left and right parts by the force of weight mg 

and writing the curvature k through the known relation from differential geometry 

s
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: , where s is the length of the arc of the curve: 

  .cos тс
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gs
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               (2) 

The ratio Fts/mg is a constant value, it shows what fraction of the weight of the 

particle is the force of pressure on the surface. We denote it by атс and solve equation (2) 

with s respect to : 

)cos( nc  


ag

v

d
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, therefore  )cos( тс  a
v

g
k

2 .       (3) 

Integration of expression (3) is possible for two cases: a ts >1 (that is, the pressure on 

the surface is greater than the weight of the particle) and a ts <1 (the pressure is less than 

the weight of the particle). Let's write down the corresponding integrals (we omit the 

constant integration): 
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Equations (4) s = s () specify the regularity of the change of the angle  along the 

arc of the curve, therefore, determine the curve by its internal properties regardless of its 

location in the rectangular coordinate system. In differential geometry, a different notation 

of curves is accepted by its internal equation - the dependence of the curvature on the 

length of the arc k = k (s). Such an equation is called a natural curve equation. We will 

obtain it for both cases if we exclude the common parameter  in the right-hand equation 

(3) and equations (4): 
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Natural equations (5) define curves regardless of their position and orientation on the 

plane. This means that when the curve is turned by a certain angle,  its natural equation 

does not change. For us, this form of recording is not acceptable, since the orientation of 

the curve in the plane will depend on the vectors of the applied forces, so let's move on to 

the coordinate form of recording. The connection of natural equations with rectangular 

coordinates is described by the dependencies known in differential geometry: 

 .sin;cos  
ds

dy

ds

dx
        (6) 

Let's rewrite dependencies (6), moving to the independent variable : 
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Similarly .sin
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d
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By substituting the expression 
ds

d
from (3) into (7), we obtain dependencies for 

finding coordinates x and y curve: 
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It can be seen from (8) that after integration the expression y = y ( ) has a simple 

form, and the form for the coordinate x = x ( ) reduces to integrals (4), so it breaks down 

into two dependencies for a ts >1 and a ts < 1: 
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In expressions (8), (9), constant integrations are omitted, since they affect only the 

parallel transfer of the curve along the Ox axes and Oy. 

In fig. 2, a, b are plotted curves according to the equations y = y ( ) from (8) and x = 

x ( ) from (9) for ats >1 and and ats <1 . 

Fig. 2a shows the cross-sectional curve of the surface, the pressure on which at a 

given speed v = 3 m/s is 1.2 times greater than the weight of the particle. The section of 

the curve 

AB can be considered as a possible profile of the cultivator's paw and stand. 

Example. Taking the mass of a motorcyclist with a motorcycle as a material point, 

find the difference in height between the highest and lowest points of the curve at a speed 

of v = 100 km/h = 27.8 m/s and overloaded by 20 % (ats = 1.2). 
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Fig. 2. Curves providing a constant pressure at a constant speed of particle 

movement: 
a – a ts =1.2;  v = 3 m/s;  b– a ts =0;  v = 3 m/s 

 

The lowest point will be at =0 
o
, and the highest at =180 

o
. So, according to the 

equation y = y() (8) we have: 
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If ats <1 , that is, the pressure on the surface should be less than the weight of the 

body, then such a reduction is possible due to the fact that the body will move along the 

outer side of the convex curve. Fig. 2, b shows a curve for ats =0 , that is, the pressure on it 

is zero. For a given speed v, such a curve exists for angle values  from a certain interval. 

It is practically impossible to use such a curve, since it does not act on the particle and can 

be considered as a limiting curve. We will explain what has been said on the following 

example. Let the curve (Fig. 2, b) be the profile of the bridge. As soon as the motorcyclist 

reaches the calculated speed on the bridge, the pressure on the bridge will disappear, so it 

will not be able to maintain this speed further due to the lack of friction. On the other 

hand, if the motorcyclist somehow manages to maintain the calculated speed (for example, 

due to jet thrust), then the trajectory of his movement will be determined by the curve of 

the bridge even in its absence. 

2. Curves providing a constant traction force at a constant speed of particle 

movement. 
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We will assume that the surface on which the particle moves has a constant 

coefficient of friction f. In order for the particle to rise along the curve with a given 

constant speed v , the traction force Ftg = const (Fig. 1) should balance the component of 

the weight force mg sin  and the friction force fF ts where F ts is determined from (1). 

Projecting the indicated forces onto the tangent t  curve, we get: 

 .)cos(sin тгFkmvmgfmg 2          (10) 

Equation (10) has a solution for k =0 , while = const , that is, we will have a straight 

line inclined at an angle  to the horizon. This is a well-known elementary example from 

theoretical mechanics. We will look for a curve that satisfies equation (10). At the same 

time, there will be a significant difference between the movement of a particle along 

straight and curved lines: in the first case, the speed can be arbitrary in magnitude, in the 

second - specific and dependent on the natural equation of the curve k = k(s). 

Transforming equation (10) similarly to equation (1), we obtain: 
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where the coefficient atg = Ftg / mg shows what fraction of the weight of the particle is the 

traction force. We transform the expression in brackets of equations (11) as follows: 
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Taking into account that f = tg , where  is the friction angle, expression (12) takes 

the form: 
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Taking (13) into account, expressions (11) will be rewritten: 
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Comparing expressions (3) and (14), we see that they are similar. For a complete 

analogy, let's go from the sine of the variable angle in (14) to the cosine (at the same time, 

the integration will take place according to similar formulas): 
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where = + -90 
0 

. Let's find the parametric equations of curve (15) using 

formulas (7). We will integrate by the variable , so the expressions for cos  and sin  

will be written: 
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Substituting in (7) cos  and sin  from (16), ds / d  from (15), we get: 
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Let's bring expressions (17) to a form suitable for integration by expanding the sine 

and cosine of the angle difference: 
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Now finding the equations of the curve is reduced to the integration of expressions 

(18), which include integrals similar to (8). So, we will again have two cases. For atg > 1/ 

cos , that is, for Ftg > mg / cos , the integration of expressions (18) gives: 
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where = + -90 
0 
. 

For atg cos 1 , that is, for Ftg mg / cos , after integrating expressions (18), we 

obtain: 
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In particular, when atg =0 (the traction force Ftg is zero), equation (20) is significantly 

simplified and takes the form: 
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Fig. 3. The curve providing a constant traction force F tg at v = 3 m/s, f = 0.577 

and tg = 1.2 

 

Figure 3 shows a curve based on equations (19), for which the coefficient of friction 

is f = 0.577 , i.e. = /6. For this case, the inequality a tg must hold cos > 1 , that is and 

аtg > 1/ cos , otherwise the curve should be constructed according to equations (20). As 

can be seen from Fig. 3, the curve is periodic and inclined to the horizon at an angle . If a 

certain traction force is applied to a material point, which according to the value of atg 

should be greater than the force of gravity, then the point will move along the concave side 

of the curve upwards with a constant speed. When atg =0 (that is, the traction force Ftg =0, 
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equation (21) gives the curve shown in Fig. 4. In this case, the material point moves down 

the curve due to the force of weight, which is balanced by the force of friction. The curve 

is divided into sections by points A and B. If we give a material particle at point A an 

initial speed v directed to the right, then the particle will move with this speed along the 

convex side of the curve, which over time gets closer and closer to a straight line inclined 

to the horizon at an angle of friction . If, at point A , the particle is given an initial speed v 

directed to the left, then it will also move further with this speed along a curve that will 

eventually approach a straight line, but already on the concave side. In this case, the arc 

AB can be considered a casing that changes the direction of the particle during free flight. 

If there was no cover AB, then the particle would move along a parabola and with 

acceleration (without taking into account the resistance of the medium). The casing 

dampens the acceleration due to friction and keeps the speed constant. It can start at any 

point within the arc AB, depending on the direction of the particle's speed after it leaves 

the previous working body. If a particle falls from a certain height, it is possible to 

determine its speed at the end of the fall and for this speed calculate the curve for the 

casing, which should start at point B. Such a curve will ensure uniform movement of the 

particle further at the same speed. 

 

 

Fig. 4. A curve that ensures a constant speed in the absence of an active traction 

force (atg =0, f =0.577, v =3 m/s) 
 

The equation of such a curve was obtained by P. Vasilenko in work [1] (p. 141, 

dependence (78) and p. 142, dependence (81)). These equations differ from equations (21), 

but if we move from them to the dependence  
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k =k(s) , we will obtain the same natural equations: 
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This indicates that the specified equations in the work [1] and the obtained equation 

(21) are equations of the same curve. We also present natural equations corresponding to 

parametric equations (19) and (20): 
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When atg =0, the second equation (23) turns into equation (22). 

3. Comparative analysis of curves that provide constant pressure and constant 

traction force at constant speeds of particle movement along them. 

Comparing the natural equations of curves (5), which provide constant pressure with 

the natural equations of curves (23), which provide constant traction force, we can 

conclude that they are the same curves, only with different constant coefficients. Indeed, 

for ats >1 and atg >1/cos  these equations can be reduced to the common form: 
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B1aA  - for a constant thrust curve. 

Having equated the coefficients A and B for the curves of constant pressure and 

constant thrust, we obtain the ratio between the constant values: 

.sin;cos тгтстгтс  vvaa         (25) 
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This means that a constant thrust curve can be a constant pressure curve and vice 

versa. In order for the curve of constant traction (Fig. 3) to become a curve of constant 

pressure, it is necessary to turn it to a horizontal position (as shown in Fig. 2, a) and force 

the particle to move with the speed At the same time, the pressure force will be, that is, the 

pressure force .sinтгтс vv  F cosтгтс FF  ts and the speed vts will be smaller than 

the traction force Ftg and the speed vtg , at which the curve is a curve of constant traction. 

Conclusions and perspectives. We note that the curves must retain their properties 

only if the value of the calculated speed is strictly observed. This is explained by the fact 

that in the equations of the curves, the speed value is squared, so even a slight deviation 

from the calculated one will cause a significant deviation of the expected results. 
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РОЗРАХУНОК ЦИЛІНДРИЧНОЇ ПОВЕРХНІ, ЩО ЗАБЕЗПЕЧУЄ СТАЛУ 

CИЛУ ТЯГИ АБО СТАЛУ ВЕЛИЧИНУ ТИСКУ МАТЕРІАЛЬНОЇ 

ЧАСТИНКИ, ЯКА РУХАЄТЬСЯ ПО НІЙ ІЗ ПОСТІЙНОЮ ШВИДКІСТЮ 

 

С.Ф. Пилипака, А. В. Несвідомін 

 
Анотація. На гравітаційних поверхнях і кривих рух частинки обумовлений 

силою її ваги. Швидкість руху по кривій у таких випадках змінна. Проте в 
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сільськогосподарських машинах можуть бути випадки, коли частинка рухається по 

поверхні із постійною швидкістю, наприклад, при примусовому русі частинок 

ґрунту по поверхні робочого органу. У такому випадку на частинку, крім сили ваги, 

діє сила тяги. Якщо розглядати криві, при русі по яких із постійною швидкістю 

частинка чинитиме сталий тиск та активна сила буде сталою, то такі криві уже 

не будуть гравітаційними.  

Мета дослідження – визначення циліндричної поверхні, що забезпечує сталу 

силу тяги або сталу величину тиску матеріальної частинки, яка рухається по ній із 

постійною швидкістю. 

При дослідженнях розглядалися криві, що забезпечують сталий тиск при 

постійній швидкості руху частинки та криві, що забезпечують сталу силу тяги при 

постійній швидкості руху частинки та були проведені їх порівняння. 

Порівняння натуральних рівнянь кривих, які забезпечують сталий тиск із 

натуральними рівняннями кривих, що забезпечують сталу силу тяги, показали, що 

це одні і ті ж криві, тільки із різними постійними коефіцієнтами. 

Ці криві зберігатимуть свої властивості тільки при точному дотриманні 

величини розрахункової швидкості. Це пояснюється тим, що в рівняннях кривих 

величина швидкості піднесена до квадрату, тому навіть незначне її відхилення від 

розрахункової викликає суттєве відхилення очікуваних результатів. 
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