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Abstract. On gravitational surfaces and curves, the movement of a particle is
determined by the force of its weight. The speed of movement along the curve in such
cases is variable. However, in agricultural machines, there may be cases when a particle
moves along the surface at a constant speed, for example, during the forced movement of
soil particles along the surface of the working body. In this case, in addition to the force of
gravity, the force of traction acts on the particle. If we consider the curves along which the
particle will exert a constant pressure and the active force will be constant when moving
at a constant speed, then such curves will no longer be gravitational.

The purpose of the study is to determine a cylindrical surface that provides a
constant force of traction or a constant amount of pressure of a material particle moving
along it at a constant speed.

During the research, curves providing constant pressure at a constant speed of
particle movement and curves providing constant traction force at a constant speed of
particle movement were considered and their comparisons were made.

A comparison of the natural equations of the curves providing a constant pressure
with the natural equations of the curves providing a constant traction force showed that
these are the same curves, only with different constant coefficients.

These curves will retain their properties only if the value of the calculated speed is
strictly observed. This is explained by the fact that in the equations of the curves, the speed
value is squared, so even its slight deviation from the calculated one causes a significant
deviation of the expected results.
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Topicality. When designing agricultural machines, it is necessary to know the
movement of particles on cylindrical surfaces, which is determined by the force of the

weight of the particle and the force of traction.
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Analysis of recent research and publications. The movement of material particles
along gravitational surfaces is discussed in monographs [ 1, 2] . Since it is implied that the
surfaces are cylindrical with a horizontal arrangement of the generators, the movement of
particles can be studied on flat curves - orthogonal sections of these surfaces. In the
corresponding sections of the mentioned works, such surfaces and curves are called
gravitational surfaces, because the movement of a particle is determined by the force of its
weight. The speed of movement along the curve in such cases is variable. However, in
agricultural machines, there may be cases when a particle moves along the surface at a
constant speed (for example, during the forced movement of soil particles along the
surface of the working body [ 3] ). In this case, in addition to the force of gravity, another
active force Fy (traction force) acts on the particle. Let's find such curves when moving
along which a particle will 1) exert a constant pressure; 2) the active force F  will be
constant. Obviously, such curves will no longer be gravitational.

The purpose of the study is to determine a cylindrical surface that provides a
constant force of traction or a constant pressure of a material particle moving along it at a
constant speed.

Materials and methods of research. In the research, it is necessary to consider the
curves that provide a constant pressure at a constant speed of the particle movement and
the curves that provide a constant traction force at a constant speed of the particle
movement and compare them.

Research results and their discussion.

1. Curves providing a constant pressure at a constant speed of particle movement.

Suppose that under the action of the force Fy, a soil particle moves up the curve with
a constant speed v (Fig. 1). Let's find the equation of the curve that, at a given speed v, will
provide a constant reaction Fy of the surface, that is, a constant pressure on the surface. In

practical terms, such a surface will wear evenly and will be less prone to soil sticking. We
project all acting forces onto the main normal » curves:

mgcosa +mv’k = F_, (1)
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where k - the curvature of the curve at this point, m - the mass of the particle, g =
9.81 m/s .

Fig. 1. Decomposition of acting forces into main normal n and tangent t curve

Let's rewrite equation (1), dividing the left and right parts by the force of weight mg
and writing the curvature k through the known relation from differential geometry
daa .. ds 1

k=——=1:—=" where s is the length of the arc of the curve:
ds da s
COS & + v _Fe
s'g mg @)

The ratio F/mg is a constant value, it shows what fraction of the weight of the
particle is the force of pressure on the surface. We denote it by a,. and solve equation (2)

with s’ respect to :

ds v?
de 9(a,—-cosa)’

therefore K= %(am —Cosa) (3)
v

Integration of expression (3) is possible for two cases: a s >1 (that is, the pressure on
the surface is greater than the weight of the particle) and a <1 (the pressure is less than
the weight of the particle). Let's write down the corresponding integrals (we omit the

constant integration):
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v da 2V
S=— = arctg tg (a,>1)

9 IaTC —COSx g\/afc -1 \ e

V2 da V2 (1+ a, )tg — - 1-a} (4)
S J. 2 * (aTC < 1)

g-a, —Ccosa g\/ a’ 1+a g +\/7

Equations (4) s = s () specify the regularity of the change of the angle « along the
arc of the curve, therefore, determine the curve by its internal properties regardless of its
location in the rectangular coordinate system. In differential geometry, a different notation
of curves is accepted by its internal equation - the dependence of the curvature on the
length of the arc k = k (). Such an equation is called a natural curve equation. We will
obtain it for both cases if we exclude the common parameter « in the right-hand equation

(3) and equations (4):

k = g(aTzc B 1) . (a > 1) )
v{aﬁ - cos(gﬂ/afc -1 sﬂ
v
R 1—aTch
B 2g(1-a’)e v
k= 29\1—afcs g\l_aTzcs ' (aTC < 1) (5)
viie vV -2ae v +1

Natural equations (5) define curves regardless of their position and orientation on the
plane. This means that when the curve is turned by a certain angle, ¢ its natural equation
does not change. For us, this form of recording is not acceptable, since the orientation of
the curve in the plane will depend on the vectors of the applied forces, so let's move on to
the coordinate form of recording. The connection of natural equations with rectangular

coordinates is described by the dependencies known in differential geometry:

X _ dy .
— =C0S; —~ =sina. (6)

ds ds

Let's rewrite dependencies (6), moving to the independent variable «:
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dx da dx ds
—— ~ 7 =C0Sq, 3BiIKA —— = —COS (X
da ds da da
Similarl LAY 7
imilarly = - (7)

o i d. i . .
By substituting the expression ifrom (3) into (7), we obtain dependencies for

finding coordinates x and y curve:

—VZI cosada aTCVZI da v .
.—cosa¢ g ‘a_,—cosa Qg
sinada~ V° (8)
—J' =—In(a, —cosa).

.—Cosa ¢

It can be seen from (8) that after integration the expression y =y ( @) has a simple
form, and the form for the coordinate x = x ( &) reduces to integrals (4), so it breaks down

into two dependencies forag>landa<1:

a+1ozv2

arctg tg ———a; (a>1)
g\ aTC - 2 9
2 (1 +a, )tg 1-al, . (9)
a,.Vv R (a<1)

gx/ afc l+a)tg? , - 6"

In expressions (8), (9), constant integrations are omitted, since they affect only the
parallel transfer of the curve along the Ox axes and Oy.

In fig. 2, a, b are plotted curves according to the equationsy =y ( «) from (8) and x =
X (@) from (9) for a;>1 and and ai <1 .

Fig. 2a shows the cross-sectional curve of the surface, the pressure on which at a
given speed v = 3 m/s is 1.2 times greater than the weight of the particle. The section of
the curve 4B can be considered as a possible profile of the cultivator's paw and stand.

Example. Taking the mass of a motorcyclist with a motorcycle as a material point,
find the difference in height between the highest and lowest points of the curve at a speed
of v =100 km/h = 27.8 m/s and overloaded by 20 % (aix = 1.2).
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b
U

Fig. 2. Curves providing a constant pressure at a constant speed of particle
movement:
a—-awx=12; v=3m/s; b-ax=0; v=3m/s

The lowest point will be at o=0 °, and the highest at =180 °. So, according to the

equation y = y(«) (8) we have:

Ay =y -y —ﬁln aT°+1—27’82 In Lo+l
=180 — Ya=0 g a.-1 981 12-1

TC

=189 m.

If a;x <1, that is, the pressure on the surface should be less than the weight of the
body, then such a reduction is possible due to the fact that the body will move along the
outer side of the convex curve. Fig. 2, b shows a curve for ai =0, that is, the pressure on it
Is zero. For a given speed v, such a curve exists for angle values « from a certain interval.
It is practically impossible to use such a curve, since it does not act on the particle and can
be considered as a limiting curve. We will explain what has been said on the following
example. Let the curve (Fig. 2, b) be the profile of the bridge. As soon as the motorcyclist
reaches the calculated speed on the bridge, the pressure on the bridge will disappear, so it
will not be able to maintain this speed further due to the lack of friction. On the other
hand, if the motorcyclist somehow manages to maintain the calculated speed (for example,
due to jet thrust), then the trajectory of his movement will be determined by the curve of
the bridge even in its absence.

2. Curves providing a constant traction force at a constant speed of particle

movement.
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We will assume that the surface on which the particle moves has a constant
coefficient of friction f. In order for the particle to rise along the curve with a given
constant speed v , the traction force F = const (Fig. 1) should balance the component of
the weight force mg sin « and the friction force fF s where F  is determined from (1).
Projecting the indicated forces onto the tangent 7 curve, we get:

mg sin o + f (mg cosa +mv?k) =F_. (10)

Equation (10) has a solution for k =0, while a= const , that is, we will have a straight
line inclined at an angle « to the horizon. This is a well-known elementary example from
theoretical mechanics. We will look for a curve that satisfies equation (10). At the same
time, there will be a significant difference between the movement of a particle along
straight and curved lines: in the first case, the speed can be arbitrary in magnitude, in the
second - specific and dependent on the natural equation of the curve k = Kk(s).

Transforming equation (10) similarly to equation (1), we obtain:

ds fv?
da g(a,-sina—fcosa)’

g .
omke K= W(aTr —sina - f cosa), (11)

where the coefficient a,y = Fig/ mg shows what fraction of the weight of the particle is the

traction force. We transform the expression in brackets of equations (11) as follows:

1 :
sina +

f
———cosa| (12
1+ 2 J1+f2 (12)

Taking into account that f = tg ¢, where ¢ is the friction angle, expression (12) takes

a, —(sina+fcosa)=a, — 1+ f?

the form:

a_

T

(cosgsin o +singpcosa) =a,, — 1 sin(a + @). (13)
oS @

CosS @

Taking (13) into account, expressions (11) will be rewritten:

ds _ vZsin @ _ (— 9
da gla, cosp—sin(a+p)] vZsin ¢

[a,, cosp —sin(a + )] (14)

Comparing expressions (3) and (14), we see that they are similar. For a complete
analogy, let's go from the sine of the variable angle in (14) to the cosine (at the same time,

the integration will take place according to similar formulas):
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ds _ vZsin @ _ (O
de g(a,cosp—cosp)’ vZsin @

(a,. cosg —cos ), (15)

where f= a+ @90 °. Let's find the parametric equations of curve (15) using
formulas (7). We will integrate by the variable £, so the expressions for cos « and sin «

will be written:

cosa = cos(f—@+90°) = —sin( B —¢);

sin a =sin( B — @ +90°) = cos(SB — @). (16)
Substituting in (7) cos a and sin « from (16), ds/d « from (15), we get:
dx _ vZsingsin(f-¢) . dy  v’sinpcos(B o)
d8 g(a, cosp—cos )’ d  9(a, cosp—cos ) 17

Let's bring expressions (17) to a form suitable for integration by expanding the sine

and cosine of the angle difference:

‘o vZsin? qz)J' cospdp  v’sin q)COS(/)J' sin pdpg

g a, Cosep—Cospf g a_cosg—Ccosf’
y= v sin ? (pJ- sin Adp N vZ sin gDCOS(DJ‘ cos 3dp (18)
g a, Cosp—Ccosp g a_cosgp—Cosf

Now finding the equations of the curve is reduced to the integration of expressions
(18), which include integrals similar to (8). So, we will again have two cases. For ay> 1/

cos ¢, that is, for Fi;> mg / cos ¢, the integration of expressions (18) gives:

) a,, sin 2¢ (@, cosp +1)ig '%
_Vising I arctg - _
X= g Ja% cos? -1 Ja% cos? -1 !
| —cospln(a,, cos ¢ —cos B) - Bsin ¢ |

r ] (19)
2 a. cosop + 1)t p
_vising 2a, cos® ¢ arctg (a, cose+1)tg 4 N

g X/afr cos’p—1 \/afr cos’p—-1 !

i +sin ¢In(a,, cosp —cos B) — B cos g |
where = a+ ¢-90°.
For a, cos ¢<1 , that is, for Fig <mg / cos ¢, after integrating expressions (18), we

obtain:
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2 .
x =2 5Smo {ln A7"?]a,, cos g —sin(a + @)’ + (a + (P—900)Sin¢’}
g
_ V2 S]n(D {!_ﬂ cos g . sin ¢ 0 }
y = . A [aTr cosqo—sm(a+(0)] —(a+9—-90")cosg

_ancosp (20)
(1 + @y cos co)tg(a;(” -~ 45") - \/1 _ & cos’ @ Ji-2 cos’ g

nme A=

(I + a,, cos (p)tg(a;rq) - 450) + \/1 —a’, cos’ @

In particular, when a, =0 (the traction force F is zero), equation (20) is significantly

simplified and takes the form:

)
x=—" S;n ¢ {In [-sin( e + @) + (a + @ —90°) sin gp},

?si . 21
y="" "0 sin(a+ )P (@ +p—90°) cos g} e

9

Fig. 3. The curve providing a constant traction force F yat v =3 m/s, f = 0.577
and =1.2

Figure 3 shows a curve based on equations (19), for which the coefficient of friction
isf=0.577, i.e. p= 716. For this case, the inequality a ; must hold cos¢ > 1, that is and
ayg > 1/ cos ¢, otherwise the curve should be constructed according to equations (20). As
can be seen from Fig. 3, the curve is periodic and inclined to the horizon at an angle . If a
certain traction force is applied to a material point, which according to the value of a
should be greater than the force of gravity, then the point will move along the concave side

of the curve upwards with a constant speed. When a,, =0 (that is, the traction force F =0,
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equation (21) gives the curve shown in Fig. 4. In this case, the material point moves down
the curve due to the force of weight, which is balanced by the force of friction. The curve
Is divided into sections by points A and B. If we give a material particle at point A an
initial speed v directed to the right, then the particle will move with this speed along the
convex side of the curve, which over time gets closer and closer to a straight line inclined
to the horizon at an angle of friction ¢. If, at point A , the particle is given an initial speed v
directed to the left, then it will also move further with this speed along a curve that will
eventually approach a straight line, but already on the concave side. In this case, the arc
AB can be considered a casing that changes the direction of the particle during free flight.
If there was no cover AB, then the particle would move along a parabola and with
acceleration (without taking into account the resistance of the medium). The casing
dampens the acceleration due to friction and keeps the speed constant. It can start at any
point within the arc AB, depending on the direction of the particle's speed after it leaves
the previous working body. If a particle falls from a certain height, it is possible to
determine its speed at the end of the fall and for this speed calculate the curve for the
casing, which should start at point B. Such a curve will ensure uniform movement of the

particle further at the same speed.

Fig. 4. A curve that ensures a constant speed in the absence of an active traction
force (ay =0, f =0.577, v =3 m/s)

The equation of such a curve was obtained by P. Vasilenko in work [1] (p. 141,
dependence (78) and p. 142, dependence (81)). These equations differ from equations (21),

but if we move from them to the dependence
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k =k(s) , we will obtain the same natural equations:

S

~ 2ge
vZsin p(e* +1)

(22)

This indicates that the specified equations in the work [1] and the obtained equation
(21) are equations of the same curve. We also present natural equations corresponding to

parametric equations (19) and (20):

g(aZ cos” p—1)

1
k = ) 5 JJIL aTr > @,
: a-cos“p-1
vZsin q)[aw COS ¢ + COS 9| L 4 sj
vesin g
T ol o (23)
_ 2 2 +/1-a5; cos® s

K= 29(1—-a’ cos” p)e A, < |

CoS @

. Y 2 Y 2
V2 sin (D(ez\/l a;. Cos” ¢s _zaTr COS(DEX/l a;. Ccos” s +1)

When ay =0, the second equation (23) turns into equation (22).

3. Comparative analysis of curves that provide constant pressure and constant
traction force at constant speeds of particle movement along them.

Comparing the natural equations of curves (5), which provide constant pressure with
the natural equations of curves (23), which provide constant traction force, we can
conclude that they are the same curves, only with different constant coefficients. Indeed,

for a; >1 and a,y>1/cos ¢ these equations can be reduced to the common form:

K — A’B
N 2 ’ (24)
/A" +1+cos(ABs)
2 -
where A= 8 — 1 B= % - for the constant pressure curve;
A=.la’cos’p—1 i B=Y9/, .
x/ T @ %Tzr sin for a constant thrust curve.

Having equated the coefficients A and B for the curves of constant pressure and

constant thrust, we obtain the ratio between the constant values:

a’rc - aTF COS(D’ VTC - VTr \ Sln ¢ (25)
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This means that a constant thrust curve can be a constant pressure curve and vice
versa. In order for the curve of constant traction (Fig. 3) to become a curve of constant
pressure, it is necessary to turn it to a horizontal position (as shown in Fig. 2, a) and force

the particle to move with the speed At the same time, the pressure force will be, that is, the

pressure force V,. =V, SN @.F F,. = Fi, cos @ts and e speed vis will be smaller than

the traction force Fy;and the speed vy, at which the curve is a curve of constant traction.
Conclusions and perspectives. We note that the curves must retain their properties

only if the value of the calculated speed is strictly observed. This is explained by the fact

that in the equations of the curves, the speed value is squared, so even a slight deviation

from the calculated one will cause a significant deviation of the expected results.
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PO3PAXYHOK HUJIHAPUYHOI MOBEPXHI, 11O 3ABE3IEYYE CTAJIY
CIJIY TAI'N ABO CTAJIY BEJIMYUHY TI/ICKYUMATEPIAJII)HOT
YACTHUHKU, KA PYXAETHCA 11O HIN I3 TIOCTIMHOIO HIBUJAKICTIO

C.®. Ilununaxka, A. B. Heceéioomin

AHoTauia. Ha ecpasimayivinux nosepxHsax i Kpusux pyx YACMUHKU O0OYMOGIEeHULlL
cunoro ii eaeu. Illsuokicmv pyxy no Kpugiii y maxux eunaokax 3minua. Ilpome &
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CIIbCbKO20CNO0APCLKUX MAWUHAX MONXCYMb OYMU 6UNAOKU, KOIU YACMUHKA PYXAEMbCS NO
NOGEPXHI 13 NOCMIUHOI WBUOKICIMIO, HANPUKIAOD, NPU NPUMYCOBOMY DYCI HACMUHOK
IPYHMY NO NO8ePXHI pobou02o opeawny. Y maxomy eunaoxy HA YACMUHKY, KPIM CUlU 8azu,
die cuna mseu. Axwo poszensioamu Kpusi, npu pyci no saKux i3 NOCMIUHOW0 WEUOKICIO
YACMUHKA YUHUMUME CIMATUNL MUCK MA aKMUeHAa cuia 6yoe cmajior, mo maki Kpusi yice
He 0y0ymb 2pasimayiitHuMu.

Mema oocnidxcenus — 6u3HaUeHHs YUNIHOPUYHOI NOBEPXHI, W0 3abe3neuye cmany
cuny msaeu abo cmaiy 8eIUYUHy MUcKy MamepiaibHOi YaCMUHKU, SIKA PYXAEMbC NO Hill i3
NOCMIUHOI0 WBUOKICIO.

Ilpu Oocniodcennsnx poszensioanucs Kpuei, wo 3zabesneuyiomev CMAIUll Muck npu
NOCMIUHIL WBUOKOCMI PYXY YaACMUHKU ma Kpuel, wo 3abe3neuyoms cmaity cuny msasu npu
NOCMIHIU WBUOKOCTMI PYXY YACUHKU MA OYIU NPOBEOeH] iX NOPIGHSHHS.

llopisnanua HamypanvHux pieHsaHb KpUBUx, AKI 3abe3neuyoms Cmaiutl Muck i3
HAMYPALIbHUMU PIGHAHHAMU KPUBUX, WO 3a0e3neyyioms Cmaiy CUly mseu, noKa3auu, uo
ye OOHI [ mi Jic Kpuei, minoKu i3 pisHUMU NOCMIUHUMU KOeiyieHmamu.

Li xpusi 36epicamumyms c80i G1ACMUBOCMI MINLKU NPU MOUYHOMY OOMPUMAHHI
GeUUUHU PO3PAXYHKOBOI weuokocmi. Lle nosicnioemvcsi mum, wjo 6 pPIBHAHHAX KPUBUX
BEIUYUHA WBUOKOCII NIOHeceHa 00 K8aopamy, MoMy HAGIMb He3HaAuHe ii 8IOXUNeHHS 810
PO3PAXYHKOBOI GUKIUKAE CYMMEBE GIOXUTICHHS OUIKY8AHUX Pe3yTbmamis.

KuaouoBi cioBa: yunindpuuna nosepxmsa, mamepianvHa 4YacmuHkd, WeUOKiCmb,
cuna mazu, MuckK
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