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Abstract. There are known studies in which the movement of material particles along
gravitational surfaces is considered. The speed of movement along the curve in such cases
Is variable. However, in agricultural machines, there may be cases where a particle moves
along a surface at a constant speed. In this case, in addition to the force of gravity, the
force of traction acts on the particle.

The purpose of the study is the calculation of a cylindrical surface that provides a
constant traction force or a constant pressure value of a material particle moving along it
at a constant speed.

Curves were found along which a particle moving at a constant speed will exert a
constant pressure or the active traction force will be constant.

Equations have been found and curves have been constructed that ensure a constant
force of traction or a constant amount of pressure of a material particle moving along a
curve at a constant speed.

These curves will retain their properties only if the value of the calculated speed is
strictly observed. This is explained by the fact that in the equations of the curves, the speed
value is squared, so even a slight deviation from the calculated one will cause a significant
deviation of the expected results.

Key words: material particle, cylindrical surface, weight force, traction force,
speed

Topicality. The movement of material particles on non-gravitational surfaces occurs
in many agricultural machines. Therefore, it is important to know the movement of a
particle along such a surface.

Analysis of recent research and publications. The movement of material particles
along gravitational surfaces is considered in monographs [1, 2]. Since it is implied that the
surfaces are cylindrical with a horizontal arrangement of the generators, the movement of

particles can be studied on flat curves - orthogonal sections of these surfaces. In the
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corresponding sections of the mentioned works, such surfaces and curves are called
gravitational surfaces, because the movement of a particle is determined by the force of its
weight. The speed of movement along the curve in such cases is variable. However, in
agricultural machines, there may be cases when a particle moves along the surface at a
constant speed (for example, during the forced movement of soil particles along the
surface of the working body [ 3] ). In this case, in addition to the force of gravity, another
active force F  (traction force) acts on the particle. Let's find such curves when moving
along which a particle will 1) exert a constant pressure; 2) the active force F ; will be
constant. Obviously, such curves will no longer be gravitational.

The purpose of the study is the calculation of a cylindrical surface that provides a
constant force of traction or a constant value of pressure of a material particle moving
along it at a constant speed.

Materials and methods of research.

1. Curves providing a constant pressure at a constant speed of particle movement.

Suppose that under the action of the force Fy, a soil particle moves up the curve with
a constant speed v (Fig. 1). Let's find the equation of the curve that, at a given speed v, will
provide a constant reaction F  of the surface, that is, a constant pressure on the surface. In

practical terms, such a surface will wear evenly and will be less prone to soil sticking. We
project all acting forces onto the main normal n curves:
mgcosa + mvk = F, (1)

where k is the curvature of the curve at this point, m is the mass of the particle, g = 9.81

m/s 2.

Fig. 1. Decomposition of acting forces into main normal n and tangent { curve
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Let's rewrite equation (1), dividing the left and right parts by the force of weight mg

and writing the curvature k through the known relation from differential geometry

1 :
k= da _ 1: ds _ —, Where s is the length of the arc of the curve:
ds da s
V2 th
COS o + - = (2)
sg mg

The ratio F / mg is a constant value, it shows what fraction of the weight of the
particle is the force of pressure on the surface. We denote it by s and solve equation (2)
with respect s’ to :

ds v
da g9(a,—cosa)

S0 k—v (a,, —cosa) . (3)

Integration of expression (3) is possible for two cases: a s >1 (that is, the pressure on
the surface is greater than the weight of the particle) and a s <1 (the pressure is less than
the weight of the particle). Let's write down the corresponding integrals (we omit the

constant integration):

v de

5= arct t a >1
gja o W e, g (a, >1)

. sz do /2 (1+a )tg— 1-a2 a <) ()
g'a,—cosa g1~ Tzc (1+a g~ +\/7

Equations (4) s = s ( «) specify the regularity of the change of the angle calong the
arc of the curve, therefore, determine the curve by its internal properties regardless of its
location in the rectangular coordinate system. In differential geometry, a different notation
of curves is accepted by its internal equation - the dependence of the curvature on the
length of the arc k = k ('s) . Such an equation is called a natural curve equation. We will
obtain it for both cases if we exclude the common parameter in the right-hand equation (3)

and equations (4) «:
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g(atzg _1) )
g l
vz{atg + cos(vquafg -1 Sﬂ

Natural equations (5) define curves regardless of their position and orientation on the

k =

(a,>1) (5)

plane. This means that when the curve is turned by a certain angle, &its natural equation
does not change. For us, this form of recording is not acceptable, since the orientation of
the curve in the plane will depend on the vectors of the applied forces, so let's move on to
the coordinate form of recording. The connection of natural equations with rectangular

coordinates is described by the dependencies known in differential geometry:

d—x—cosa' OI—y—s.inoz 6
ds ’ ds ' (6)
Let's rewrite dependencies (6), moving to the independent variable «:
dx da dx ds
—— ——=CO0Sa, 3BIIKH —— = —— COS &
da ds da da
Similarl dy ESln a. 7
imilarly —— do  da (7)

d
By substituting the expression ifrom (3) into (7), we obtain dependencies for

finding coordinates x and y curve:

~ j cosada aTcVZI da v 0
,—Cosa g Ya,-cosa g
sinada~ V? (8)
=—_[ =—In(a,, —cos a).
—cosa g

It can be seen from (8) that after integration the expression y =y ( «) has a simple
form, and the form for the coordinate x = x ( @) reduces to integrals (4), so it breaks down

into two dependencies for a s >1and a < 1:
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2a, vV’ a, +1 2
x=—"29  arctg |0 Ttg % Y (a>1)
gyaz -1 a,-1"2 ¢
a
a, v’ (1+atg)tgz—,/1—afg /2 9
X = In -—a. (a<))

gy1-ag (1+atg)th+ 1-a72 9

In expressions (8), (9), constant integrations are omitted, since they affect only the

parallel transfer of the curve along the Ox axes and Oy .

v Y

Fig. 2. Curves providing a constant pressure at a constant speed of particle
movement:

a—ayu=12; v=3mls; b—a=0; v=3m/s.

In fig. 2, &, b are plotted curves according to the equationsy =y ( @) from (8) and x =
X (o) from (9) for a ;>1 and and <1 .

Fig. 2, a shows the cross-sectional curve of the surface, the pressure on which at a
given speed v = 3 m/s is 1.2 times greater than the weight of the particle. The section of
the curve 4B can be considered as a possible profile of the cultivator's paw and stand.

Example. Taking the mass of a motorcyclist with a motorcycle as a material point,
find the difference in height between the highest and lowest points of the curve at a speed
of v =100 km/h = 27.8 m/s and overloaded by 20 % (a = 1.2).

The lowest point will be at =0 °, and the highest at =180 °. So, according to the

equationy =y ( @) (8) we have:
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v 3g+l 2787 1241

AY=Y,:180" Yoo = In

= =189(m).
g a,-1 981 12-1

If a,y <1, that is, the pressure on the surface should be less than the weight of the
body, then such a reduction is possible due to the fact that the body will move along the
outer side of the convex curve. Fig. 2, b shows a curve for a,; =0, that is, the pressure on it
Is zero. For a given speed v, such a curve exists for angle values afrom a certain interval.
It is practically impossible to use such a curve, since it does not act on the particle and can
be considered as a limiting curve. We will explain what has been said on the following
example. Let the curve (Fig. 2, b) be the profile of the bridge. Once the motorcyclist
reaches the rated speed on the bridge, the pressure on the bridge will disappear, so he will
not be able to maintain this speed any further due to the lack of friction. On the other hand,
If the motorcyclist somehow manages to maintain the calculated speed (for example, due
to jet thrust), then the trajectory of his movement will be determined by the curve of the
bridge even in its absence.

2. Curves providing a constant traction force at a constant speed of particle
movement.

We will assume that the surface on which the particle moves has a constant
coefficient of friction f. In order for the particle to rise along the curve with a given
constant speed v , the traction force Fi; = const (Fig. 1) should balance the component of
the weight force mg sin cand the friction force F ; where F  is determined from (1).
Projecting the indicated forces onto the tangentz curve, we get:

mgsin o« + f (mgcosa + mv’k) = . (10)

Equation (10) has a solution for k =0, while o= const , that is, we will have a straight
line inclined at an angle ato the horizon. This is a well-known elementary example from
theoretical mechanics. We will look for a curve that satisfies equation (10). At the same
time, there will be a significant difference between the movement of a particle along
straight and curved lines: in the first case, the speed can be arbitrary in magnitude, in the

second - specific and dependent on the natural equation of the curve k = k (s ) .

Transforming equation (10) similarly to equation (1), we obtain:
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ds _ v k=—5(a,-sina-fcosa), (11
da  g(a,-sina— foosa) f2 - ()

where the coefficient a, = Fiq/ mg shows what fraction of the weight of the particle is

the traction force. We transform the expression in brackets of equations (11) as follows:
sin o +

a, —(sina+ f cosa)=a, -1+ f* L T cosa| (12)
1+ f? 1+ f2

Taking into account that f = tg ¢, where ¢ is the friction angle, expression (12) takes

the form:

1
a, ————(cos gsin a +sin pcosa) = a,,
COS @

1 sin(a + @)
05 ¢ - (13)
Taking (13) into account, expressions (11) will be rewritten:

ds _ vZsin @ K-
da g[a CoSp — Sln(a+(0)J v? Sln(p

[atg cosp— Sln(a+¢))] (14)

Comparing expressions (3) and (14), we see that they are similar. For a complete
analogy, let's go from the sine of the variable angle in (14) to the cosine (at the same time,

the integration will take place according to similar formulas):

ds vZsin @ g
B ? k =———(a, CoSp—Cosf),
da  g(a,cosp—cosf) Fsing PuC0SP=C0sA) - (19)

where = a+ 90 °. Let's find the parametric equations of curve (15) using formulas
(7). We will integrate by the variable g, so the expressions for cosa and sin awill be

written:

cosa = cos(fB— @ +90°) = —sin( B —o);

sin & = sin( B+ 90°) = cos( B — ). (16)
Substituting in (7) cosa and sin afrom (16), ds /da from (15), we get:
dx vZsin gsin( f—¢) dy  v®sinpcos(S—¢)
dg  dg(a, cosp—cosf3)’ dﬂ g(a, Cosp—Ccosf) (17)

Let's bring expressions (17) to a form suitable for integration by expanding the sine

and cosine of the angle difference:
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_visin?g cosfdf  v’singpcosg sin fdp
g a,,Cosp —Cos 5 g a,,C0S ¢ —COos i
_Visin?g sin fdg N v®sin pcos g cos fdp
g a,, Cos @ —Cos 3 g a,,CoS @ —CoS 3

(18)

Now finding the equations of the curve is reduced to the integration of expressions
(18), which include integrals similar to (8). So, we will again have two cases. For a, > 1/

cos ¢, that is, for Fig>mg / cos ¢, the integration of expressions (18) gives:

a, sin 2¢ (atg cos @ +1)tg ﬂ/ |

_Vising| —— _
T g \/8 COS go—l 1/atgcos p-1 ,

—cosgln(a,, cosp—cos ) — Bsin A

r ] 19
23_ cos? o (atg COS¢+1)tgﬂ/ (19)

_Vvising
T g 1/atgcos Q- 1 1/atgcos p-1

+sin gIn(a,, cos ¢ —cos ) — Bcos ¢

where = a+ ¢-90°.
For a, cos o<1, that is, for F y <mg / cos, ¢ after integrating expressions (18), we

obtain:
.
x=— P i Al cos g —sin(a + ) + (@ + o —90°)sin o
g

_Vising
9

{In AP [atg cos ¢ —sin(ar + ) [™ — (& + ¢ — 90°) cos (p},
(20)

a4y COSQ

oare er g_ 45(’) ~ J1-a% cos? ¢ i

(1+a,cos go)tg(
ne A=

(1+a, cos go)tg(a;(p - 450) + \/1— a,, Cos” ¢

In particular, when a =0 (the traction force F is zero), equation (20) is significantly

simplified and takes the form:
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)
x=—" Sg;n ¢ {In [ sin(a + @) [** + (& + p — 90°) sin gp}’,

2 si . 21
y =L dn [ sin(a + @)™ — (e + 9 - 90°) cos ) &1

Fig. 3. The curve providing a constant traction force F yat v =3 m/s, f = 0.577,
andtg=1.2

Figure 3 shows a curve based on equations (19), for which the coefficient of friction
is f=0.577 , i.e. = A6 . For this case, the inequality a y must hold cose > 1, that is and
1g > 1/cos¢, otherwise the curve should be constructed according to equations (20). As can
be seen from Fig. 3, the curve is periodic and inclined to the horizon at an angle & If a
certain traction force is applied to a material point, which according to the value of a
should be greater than the force of gravity, then the point will move along the concave side
of the curve upwards with a constant speed. When a;; =0 (that is, the traction force Fiy =0
), equation (21) gives the curve shown in Fig. 4. In this case, the material point moves
down the curve due to the force of weight, which is balanced by the force of friction. The
curve is divided into sections by points A and B. If we give a material particle at point A an
initial speed v directed to the right, then the particle will move with this speed along the
convex side of the curve, which over time gets closer and closer to a straight line inclined
to the horizon at an angle of friction ¢. If, at point A, the particle is given an initial speed v
directed to the left, then it will also move further with this speed along a curve that will

eventually approach a straight line, but already on the concave side. In this case, the arc
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AB can be considered a casing that changes the direction of the particle during free flight.
If there was no cover AB , then the particle would move along a parabola and with
acceleration (without taking into account the resistance of the medium). The casing
dampens the acceleration due to friction and keeps the speed constant. It can start at any
point within the arc AB , depending on the direction of the particle's speed after it leaves
the previous working body. If a particle falls from a certain height, it is possible to
determine its speed at the end of the fall and for this speed calculate the curve for the
casing, which should start at point B . Such a curve will ensure uniform movement of the
particle further at the same speed.

Y

Fig. 4. A curve that ensures a constant speed in the absence of an active traction
force (ay =0, f =0.577, v =3 m/s)

The equation of such a curve was obtained by Acad. P.M. Vasilenko in work [1] (p.
141, dependence (78) and p. 142, dependence (81)). These equations differ from equations
(21), but if we move from them to the dependence k = k ('s ), we will obtain the same

natural equations:

S

B 20e
vZsin p(e® +1)

(22)

This indicates that the specified equations in the work [1] and the obtained equation
(21) are equations of the same curve. We also present natural equations corresponding to
parametric equations (19) and (20):
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a2 cos’p-1
‘- g(aycos” ¢ —1) wma, > —;
, g\/afg cos’p—1 CoS ¢
v?sin | a,, CoSs @ +COS . S
vZsin ¢
\|1-a2 cos® ps (23)
29(1—ag cos® p)e s e
k = U1t atg < —
oS @

. 2 [1-a2 cos? 1-a2 cos?
vZ sin (p(e R _2a, cos et e +1j

When a,;, =0, the second equation (23) turns into equation (22).

Research results and their discussion. Comparing the natural equations of curves
(5), which provide a constant pressure, with the natural equations of curves (23), which
provide a constant thrust force, we can conclude that they are the same curves, only with
different constant coefficients. Indeed, for a s >1 and a ; >1/ cos ¢these equations can be

reduced to the common form:
K — A’B
/A? +1+cos(ABs)

(24)

_ (42 _ Y
where A= Ay 1 and B = %tZ - for the constant pressure curve;
g

2 2
A= \/ a,cos“p-1 ahd B= % sin ¢ - for a constant thrust curve.
tg @

Having equated the coefficients A and B for the curves of constant pressure and

constant thrust, we obtain the ratio between the constant values:

a,, = a,,CoS @; Vie = Vg+/Sin . (25)
This means that a constant thrust curve can be a constant pressure curve and vice
versa. In order for the curve of constant thrust (Fig. 3) to become a curve of constant

pressure, it is necessary to turn it to a horizontal position (as shown in Fig. 2, a) and force

the particle to move at a speed Vi, =V +/SiN @. At the same time F, = F,C0S¢@  the

pressure force will be v  will be smaller than the traction force Fi and the speed vy , at

which the curve is a curve of constant traction.
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Conclusions and perspectives. The equations are retrieved and the curves are
constructed, which one provide constant thrust force or constant of pressure of a mass
point driving on a curve from constant speed.

The curves will retain their properties only if the value of the calculated speed is
strictly observed. This is explained by the fact that in the equations of the curves, the speed
value is squared, so even a slight deviation from the calculated one will cause a significant

deviation of the expected results.
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PO3PAXYHOK IUJITHIPUYHOI MOBEPXHI, 11O 3ABE3IIEUY€E CTAJY
CHUJIY TATU ABO CTAJY BEJIMYHUHY TUCKY MATEPIAJIBHOI
YACTHUHKH, SIKA PYXAETHCS MO HIM 13 TOCTIMHOIO IIBUJIKICTIO

C. @. Ilununaka, A. B. Hecgioomin

AHoOTaWiA. Bidomi 00CniOxceHHs, 68 AKUX pO32N10AEMbCS PYX MAMepiaibHUxX
YacmMuHOK no epasimayiunux nogepxusax. Llleuokicms pyxy no Kpusiti 6 maxkux eunaokax
3minHa. Ilpome 6 CilbCbKO2OCNOOAPCHKUX MAUIUHAX MOJ*CYMb OYMuU UNAOKU, KOJIU
YACMUHKA PYXAEMbCS NO NOBEPXHI I3 NOCMIUHOI0 WeUuoKicmio. Y makomy eunaoxy Ha
YACMUHKY, KPIM CUIU 8azu, Oi€ Cuna mseu.

Mema Oocniddicennss - po3paxyHox yuniHOpU4HOi NOBepxXHi, wo 3abes3neyye cmaiy
Cuny maeu abo cmany 8eIuyuty mucky MamepianbHoi YaCMUHKU, KA pyXacmubCs no Hil i3
NOCMILIHOI0 WBUOKICMIO.

bynu 3uatioeni xpuei, npu pyci no AKux i3 NOCMIUHON WEUOKICMIO YACMUHKA
YUHUMUME CIMATULL MUCK ab0 akmusHa cula msaeu 6yoe cmaior.
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3natioeno pieusanHA ma nob6y008aHO Kpuei, sKi 3abe3neuyoms NOCMIUHY CULy msaeu
abo NocmiltHy 6elUYUH)y MUCKY MAMEPIAIbHOI 4acmKu, Wo pPyXA€Emvcs No Kpusitl i3
NOCMIIHOI0 WBUOKICMIO.

Li xkpusi 36epicamumyms C60I 61ACMUBOCMI MINLKU NPU MOUYHOMY OOMPUMAHHI
8eUUUHU PO3PAXYHKOB0I weuokocmi. Lle nosacuioemvcs mum, wo 6 PIiBHAHHAX KPUBUX
BeIUYUHA WBUOKOCII NIOHeceHa 00 Keaopamy, Momy HAGIMb He3HauHe il 8I0XUIeHHs B0
PO3PAXyHKOB0I UKAUYE CYMMEGE BIOXUNEHHS OUIKYBAHUX De3YIbmAamis.

Kuarwuosi cioBa: mamepianvha uwacmunka, yuiiHOpUUHa NOGEPXHA, CUNA 6AlU,
cuna mazu, WeuoKicmo
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