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Abstract. There are known studies in which the movement of material particles along 

gravitational surfaces is considered. The speed of movement along the curve in such cases 

is variable. However, in agricultural machines, there may be cases where a particle moves 

along a surface at a constant speed. In this case, in addition to the force of gravity, the 

force of traction acts on the particle. 

The purpose of the study is the calculation of a cylindrical surface that provides a 

constant traction force or a constant pressure value of a material particle moving along it 

at a constant speed. 

Curves were found along which a particle moving at a constant speed will exert a 

constant pressure or the active traction force will be constant. 

Equations have been found and curves have been constructed that ensure a constant 

force of traction or a constant amount of pressure of a material particle moving along a 

curve at a constant speed. 

These curves will retain their properties only if the value of the calculated speed is 

strictly observed. This is explained by the fact that in the equations of the curves, the speed 

value is squared, so even a slight deviation from the calculated one will cause a significant 

deviation of the expected results. 

Key words: material particle, cylindrical surface, weight force, traction force, 

speed 
 

Topicality. The movement of material particles on non-gravitational surfaces occurs 

in many agricultural machines. Therefore, it is important to know the movement of a 

particle along such a surface. 

Analysis of recent research and publications. The movement of material particles 

along gravitational surfaces is considered in monographs [1, 2]. Since it is implied that the 

surfaces are cylindrical with a horizontal arrangement of the generators, the movement of 

particles can be studied on flat curves - orthogonal sections of these surfaces. In the 
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corresponding sections of the mentioned works, such surfaces and curves are called 

gravitational surfaces, because the movement of a particle is determined by the force of its 

weight. The speed of movement along the curve in such cases is variable. However, in 

agricultural machines, there may be cases when a particle moves along the surface at a 

constant speed (for example, during the forced movement of soil particles along the 

surface of the working body [ 3 ] ). In this case, in addition to the force of gravity, another 

active force F tg (traction force) acts on the particle. Let's find such curves when moving 

along which a particle will 1) exert a constant pressure; 2) the active force F tg will be 

constant. Obviously, such curves will no longer be gravitational. 

The purpose of the study is the calculation of a cylindrical surface that provides a 

constant force of traction or a constant value of pressure of a material particle moving 

along it at a constant speed. 

Materials and methods of research. 

1. Curves providing a constant pressure at a constant speed of particle movement. 

Suppose that under the action of the force Ftg , a soil particle moves up the curve with 

a constant speed v (Fig. 1). Let's find the equation of the curve that, at a given speed v, will 

provide a constant reaction F tg of the surface, that is, a constant pressure on the surface. In 

practical terms, such a surface will wear evenly and will be less prone to soil sticking. We 

project all acting forces onto the main normal n  curves: 

,cos tg

2 Fkmvmg             (1) 

where k is the curvature of the curve at this point, m is the mass of the particle, g = 9.81 

m/s 
2
. 

 

Fig. 1. Decomposition of acting forces into main normal n and tangent t  curve 
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Let's rewrite equation (1), dividing the left and right parts by the force of weight mg 

and writing the curvature k through the known relation from differential geometry 

s

1

d

ds
1

ds

d
k







: , where s is the length of the arc of the curve: 
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              (2) 

The ratio F ts / mg is a constant value, it shows what fraction of the weight of the 

particle is the force of pressure on the surface. We denote it by ats and solve equation (2) 

with respect s to : 
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Integration of expression (3) is possible for two cases: a ts >1 (that is, the pressure on 

the surface is greater than the weight of the particle) and a ts <1 (the pressure is less than 

the weight of the particle). Let's write down the corresponding integrals (we omit the 

constant integration): 
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   (4) 

Equations (4) s = s ( ) specify the regularity of the change of the angle along the 

arc of the curve, therefore, determine the curve by its internal properties regardless of its 

location in the rectangular coordinate system. In differential geometry, a different notation 

of curves is accepted by its internal equation - the dependence of the curvature on the 

length of the arc k = k ( s ) . Such an equation is called a natural curve equation. We will 

obtain it for both cases if we exclude the common parameter in the right-hand equation (3) 

and equations (4) : 
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Natural equations (5) define curves regardless of their position and orientation on the 

plane. This means that when the curve is turned by a certain angle, its natural equation 

does not change. For us, this form of recording is not acceptable, since the orientation of 

the curve in the plane will depend on the vectors of the applied forces, so let's move on to 

the coordinate form of recording. The connection of natural equations with rectangular 

coordinates is described by the dependencies known in differential geometry: 

 .sin;cos  
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        (6) 

Let's rewrite dependencies (6), moving to the independent variable : 
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d
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By substituting the expression 
ds

d
from (3) into (7), we obtain dependencies for 

finding coordinates x and y curve: 
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It can be seen from (8) that after integration the expression y = y ( ) has a simple 

form, and the form for the coordinate x = x ( ) reduces to integrals (4), so it breaks down 

into two dependencies for a ts >1 and a ts < 1: 
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 (9) 

In expressions (8), (9), constant integrations are omitted, since they affect only the 

parallel transfer of the curve along the Ox axes and Oy . 

 

Fig. 2. Curves providing a constant pressure at a constant speed of particle 

movement: 

a – a tg =1.2;  v = 3 m/s;  b – a ts =0;  v = 3 m/s. 

 

In fig. 2, a, b are plotted curves according to the equations y = y ( ) from (8) and x = 

x ( ) from (9) for a tg >1 and and tg <1 . 

Fig. 2, a shows the cross-sectional curve of the surface, the pressure on which at a 

given speed v = 3 m/s is 1.2 times greater than the weight of the particle. The section of 

the curve 

AB can be considered as a possible profile of the cultivator's paw and stand. 

Example. Taking the mass of a motorcyclist with a motorcycle as a material point, 

find the difference in height between the highest and lowest points of the curve at a speed 

of v = 100 km/h = 27.8 m/s and overloaded by 20 % ( a tg = 1.2). 

The lowest point will be at =0 
o 

, and the highest at =180 
o 

. So, according to the 

equation y = y ( ) (8) we have: 
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If atg <1, that is, the pressure on the surface should be less than the weight of the 

body, then such a reduction is possible due to the fact that the body will move along the 

outer side of the convex curve. Fig. 2, b shows a curve for atg =0 , that is, the pressure on it 

is zero. For a given speed v, such a curve exists for angle values from a certain interval. 

It is practically impossible to use such a curve, since it does not act on the particle and can 

be considered as a limiting curve. We will explain what has been said on the following 

example. Let the curve (Fig. 2, b) be the profile of the bridge. Once the motorcyclist 

reaches the rated speed on the bridge, the pressure on the bridge will disappear, so he will 

not be able to maintain this speed any further due to the lack of friction. On the other hand, 

if the motorcyclist somehow manages to maintain the calculated speed (for example, due 

to jet thrust), then the trajectory of his movement will be determined by the curve of the 

bridge even in its absence. 

2. Curves providing a constant traction force at a constant speed of particle 

movement. 

We will assume that the surface on which the particle moves has a constant 

coefficient of friction f. In order for the particle to rise along the curve with a given 

constant speed v , the traction force Ftg = const (Fig. 1) should balance the component of 

the weight force mg sin and the friction force F tg where F tg is determined from (1). 

Projecting the indicated forces onto the tangent t  curve, we get: 

 .)cos(sin tg

2 Fkmvmgfmg           (10) 

Equation (10) has a solution for k =0 , while = const , that is, we will have a straight 

line inclined at an angle to the horizon. This is a well-known elementary example from 

theoretical mechanics. We will look for a curve that satisfies equation (10). At the same 

time, there will be a significant difference between the movement of a particle along 

straight and curved lines: in the first case, the speed can be arbitrary in magnitude, in the 

second - specific and dependent on the natural equation of the curve k = k ( s ) . 

Transforming equation (10) similarly to equation (1), we obtain: 
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where the coefficient atg = Ftg / mg shows what fraction of the weight of the particle is 

the traction force. We transform the expression in brackets of equations (11) as follows: 
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Taking into account that f = tg , where  is the friction angle, expression (12) takes 

the form: 
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Taking (13) into account, expressions (11) will be rewritten: 
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Comparing expressions (3) and (14), we see that they are similar. For a complete 

analogy, let's go from the sine of the variable angle in (14) to the cosine (at the same time, 

the integration will take place according to similar formulas): 
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where = + -90 
0 
. Let's find the parametric equations of curve (15) using formulas 

(7). We will integrate by the variable , so the expressions for cos and sin will be 

written: 
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Substituting in (7) cos and sin from (16), ds /d from (15), we get: 
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Let's bring expressions (17) to a form suitable for integration by expanding the sine 

and cosine of the angle difference: 
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Now finding the equations of the curve is reduced to the integration of expressions 

(18), which include integrals similar to (8). So, we will again have two cases. For atg > 1/ 

cos , that is, for Ftg > mg / cos , the integration of expressions (18) gives: 
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where = + -90 
0 
. 

For atg cos 1 , that is, for F tg mg / cos,  after integrating expressions (18), we 

obtain: 
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In particular, when atg =0 (the traction force Ftg is zero), equation (20) is significantly 

simplified and takes the form: 
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Fig. 3. The curve providing a constant traction force F tg at v = 3 m/s, f = 0.577, 

and tg = 1.2 

 

Figure 3 shows a curve based on equations (19), for which the coefficient of friction 

is f = 0.577 , i.e. = /6 . For this case, the inequality a tg must hold cos > 1 , that is and 

tg > 1/cos, otherwise the curve should be constructed according to equations (20). As can 

be seen from Fig. 3, the curve is periodic and inclined to the horizon at an angle . If a 

certain traction force is applied to a material point, which according to the value of atg 

should be greater than the force of gravity, then the point will move along the concave side 

of the curve upwards with a constant speed. When atg =0 (that is, the traction force Ftg =0 

), equation (21) gives the curve shown in Fig. 4. In this case, the material point moves 

down the curve due to the force of weight, which is balanced by the force of friction. The 

curve is divided into sections by points A and B. If we give a material particle at point A an 

initial speed v directed to the right, then the particle will move with this speed along the 

convex side of the curve, which over time gets closer and closer to a straight line inclined 

to the horizon at an angle of friction . If, at point A, the particle is given an initial speed v 

directed to the left, then it will also move further with this speed along a curve that will 

eventually approach a straight line, but already on the concave side. In this case, the arc 
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AB can be considered a casing that changes the direction of the particle during free flight. 

If there was no cover AB , then the particle would move along a parabola and with 

acceleration (without taking into account the resistance of the medium). The casing 

dampens the acceleration due to friction and keeps the speed constant. It can start at any 

point within the arc AB , depending on the direction of the particle's speed after it leaves 

the previous working body. If a particle falls from a certain height, it is possible to 

determine its speed at the end of the fall and for this speed calculate the curve for the 

casing, which should start at point B . Such a curve will ensure uniform movement of the 

particle further at the same speed. 

 

Fig. 4. A curve that ensures a constant speed in the absence of an active traction 

force (atg =0, f =0.577, v =3 m/s) 

 

The equation of such a curve was obtained by Acad. P.M. Vasilenko in work [1] (p. 

141, dependence (78) and p. 142, dependence (81)). These equations differ from equations 

(21), but if we move from them to the dependence k = k ( s ) , we will obtain the same 

natural equations: 

  .
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This indicates that the specified equations in the work [1] and the obtained equation 

(21) are equations of the same curve. We also present natural equations corresponding to 

parametric equations (19) and (20): 
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When atg =0, the second equation (23) turns into equation (22). 

Research results and their discussion. Comparing the natural equations of curves 

(5), which provide a constant pressure, with the natural equations of curves (23), which 

provide a constant thrust force, we can conclude that they are the same curves, only with 

different constant coefficients. Indeed, for a ts >1 and a tg >1/ cos these equations can be 

reduced to the common form: 
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Having equated the coefficients A and B for the curves of constant pressure and 

constant thrust, we obtain the ratio between the constant values: 

.sin;cos tgtсtgtс  vvaa          (25) 

This means that a constant thrust curve can be a constant pressure curve and vice 

versa. In order for the curve of constant thrust (Fig. 3) to become a curve of constant 

pressure, it is necessary to turn it to a horizontal position (as shown in Fig. 2, a) and force 

the particle to move at a speed .sintgtс vv  At the same time costgtс FF  , the 

pressure force will be v ts will be smaller than the traction force Ftg and the speed vtg , at 

which the curve is a curve of constant traction. 
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Conclusions and perspectives. The equations are retrieved and the curves are 

constructed, which one provide constant thrust force or constant of pressure of a mass 

point driving on a curve from constant speed. 

The curves will retain their properties only if the value of the calculated speed is 

strictly observed. This is explained by the fact that in the equations of the curves, the speed 

value is squared, so even a slight deviation from the calculated one will cause a significant 

deviation of the expected results. 
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РОЗРАХУНОК ЦИЛІНДРИЧНОЇ ПОВЕРХНІ, ЩО ЗАБЕЗПЕЧУЄ СТАЛУ 

CИЛУ ТЯГИ АБО СТАЛУ ВЕЛИЧИНУ ТИСКУ МАТЕРІАЛЬНОЇ 

ЧАСТИНКИ, ЯКА РУХАЄТЬСЯ ПО НІЙ ІЗ ПОСТІЙНОЮ ШВИДКІСТЮ 

С. Ф. Пилипака, А. В. Несвідомін 

Анотація. Відомі дослідження, в яких розглядається рух матеріальних 

частинок по гравітаційних поверхнях. Швидкість руху по кривій в таких випадках 

змінна. Проте в сільськогосподарських машинах можуть бути випадки, коли 

частинка рухається по поверхні із постійною швидкістю. У такому випадку на 

частинку, крім сили ваги, діє сила тяги.  

Мета дослідження - розрахунок циліндричної поверхні, що забезпечує сталу 

cилу тяги або сталу величину тиску матеріальної частинки, яка рухається по ній із 

постійною швидкістю. 

Були знайдені криві, при русі по яких із постійною швидкістю частинка 

чинитиме сталий тиск або активна сила тяги буде сталою.  
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Знайдено рівняння та побудовано криві, які забезпечують постійну силу тяги 

або постійну величину тиску матеріальної частки, що рухається по кривій із 

постійною швидкістю. 

Ці криві зберігатимуть свої властивості тільки при точному дотриманні 

величини розрахункової швидкості. Це пояснюється тим, що в рівняннях кривих 

величина швидкості піднесена до квадрату, тому навіть незначне її відхилення від 

розрахункової викличе суттєве відхилення очікуваних результатів. 

Ключові слова: матеріальна частинка, циліндрична поверхня, сила ваги, 

сила тяги, швидкість 


