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Abstract. The movement of material particles along the inner surface of the cone
takes place in cyclones, the designs of which can have both cylindrical and conical parts.
Aerodynamic processes occurring in a cyclone are complex in nature, therefore they
cannot be accurately modeled on the basis of theoretical approaches. A number of
simplifications were introduced during the research: air resistance is not taken into
account, since the particle is fed into the cone together with the air, although later their
directions of movement do not coincide (the particle damps the speed and falls down, and
the air along the central part along the axis of the cone rises up and goes out); the
influence of particles on each other, their size, etc.

The purpose of the article is to study the motion of a material particle entering the
inner surface of a vertical cone with a given initial velocity.

If a material particleis directed with aninitial velocity to the inner wall of the cone
perpendicular to its generator, then its further motion will include both rotation around
the axis of the cone and descent down under the action of its own weight. To find the
trajectory of motion, a material point was taken as the vertex of the accompanying Frenet
trihedron, which has three mutually perpendicular orthogonal planes. The second
accompanying Darboux trihedron has a common orthogonal plane tangent to the
trajectory with the Frenet trihedron.

The balance of the acting forces in the projections onto the orthogonal planes of the
Darboux trihedron was considered. Thismade it possible to determine the projections of
the curvature of the curve onto the corresponding orthogonal planes of the Darboux
trihedron. The differential geometry apparatus made it possible to find them through the
first and second quadratic forms of the surface, which allows avoiding cumbersome
transformations.

Differential equations of motion of a material particle along the inner surface of a
vertical cone were compiled. The equations were solved using the MatLab system.

The equation of motion of a particle along the inner surface of the cone was
obtained. Analyzing the trajectory of the particle, we can conclude that it is significantly
different from the trajectory of motion along the inner surface of the cylinder. The graphs
of changes invelocity also show the difference between the motion of a particle along a
cone and the same motion along a cylinder. If, upon entering the surface of a cylinder, the
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particle damps its velocity to a certain limit, and then it begins to increase again, then
during movement along a cone the velocity of the particle has a certain periodic character
and approaches zero over time.

In the absence of friction and air resistance, a material particle, after entering the
inner surface of the cone at a certain angle to the generator (except zero), performs an
oscillatory motion, alternately rising and falling along a trajectory in the form of a loop,
moving for any length of time. Depending on the initial conditions, the particle can
describe a finite number of branches of the loop, an infinite number of branches, move
along a straight-line generator of the cone, or along an intermediate trajectory between a
straight line and a loop.

In the presence of friction, the particle will descend to the top of the cone, with
possible local rises, the magnitude of which will depend on the initial velocity and the
angle of inclination of the generating cone. The velocity in such a motion will damp out,
while also having an oscillatory character.

Key words: material particle, cone, Darboux trihedron, equation of motion of a
particle

Topicality. The movement of material particles along the inner surface of the cone
takes place in cyclones, the designs of which can have both cylindrical and conical parts.
The aerodynamic processes that occur in a cyclone are complex in nature, so they cannot
be accurately modeled based on theoretical approaches [1]. But, as Academician P. M.
Vasylenko wrote, “in many cases no the need to obtain accurate values, and if necessary,
these quantities always can be verified and refined based on experimental data” [2]. Given
this, in further theoretical calculations we will introduce a number of simplifications: we
will not take into account air resistance, since the particle is fed into the cone together with
the air, although in the future their directions of motion do not coincide (the particle damps
the speed and falls down, and air in the central part along the axis of the cone rises up and
goes out); the effect of particles on each other, their size, etc.

Analysis of recent research and publications. The movement of the processed
material along cylindrical surfaces is considered in [3]. The article is devoted to the study
of the movement of a material particle along the inner surface of a vertical cylinder with
lateral material feed. [4]. However, the behavior of particles during lateral feeding onto the
inner surface of a vertical cone is significantly different from the similar situation with a
cylinder, which determined the direction of research.

The purpose of the study is to study the motion of a material particle entering the

inner surface of a vertical cone with a given initial velocity.
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Materials and methods of research. If a material particle is directed with an initial
velocity v , on the inner wall of the cone perpendicular to its generator, then its further
motion will include both rotation around the axis of the cone and lowering down under the
action of its own weight. To find the trajectory of motion, we will take the material point
as the vertex of the accompanying Frenet trihedron , which has three mutually
perpendicular orths (Fig. 1, a). The second accompanying t n b Darboux trihedron with
orthst N P has in common with the trihedron Frenet orthogonal tangent to the trajectory.
Orthogonals P, b, N, nlie in the plane normal to the trajectory, and orthogonals P and

t— in the plane tangent to the cone x. Between orthogonals Pand b, N and nthere is an

angle ¢ (Fig. 1, a), which varies along the trajectory and is a function of its arc: e= &( s).

ds

ucosyda o

Fig. 1. Graphic illustrations for compiling differential equations of motion of a
material particle along the inner surface of a cone with a vertical axis:
a — Frenet and Darboux trinedron of the trajectory of motion of a material particle;
b — decomposition of the acting forces in the normal plane of the trajectory;
Cc — to determine the differential of the trajectory arc

Research results and their discussion. Let us consider the equilibrium of the forces
acting in the projections onto the orts of the Darbouxtrihedron . Let us project onto the ort

tthe forces that give the particle an acceleration dv_dv ds_ dv (t-time; s — length
dt ds dt ds

trajectory arcs):
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dv
mvd—=mgcosw— fR, (1)
S

where m is the mass of the particle; f — friction coefficient; R is the pressure of the
particle on the surface of the cone; y~ the angle between the gravity vector mg and the
orthogonal line t; g = 9.81 m/s 2.

Todetermine the pressure R, we consider the forces acting in the normal plane. To do
this, we choose the viewpoint so that the ordinatet projected into a point (Fig. 1,b).

Centrifugal force mv 2k ( k = k (s ) — trajectory curvature) is directed along the
orthogonal plane of the main normal nin the opposite direction. Its component in the
projection onto the orthogonal plane N will cause a certain pressure. The other component
— the projection of the weight force mg onto the orthogonal plane N — will increase the
pressure on the surface, which is the main difference from a cylindrical surface, for which
this component is zero. The pressure force will be written as the sum of two components:

R =mv?k cos & +mg cos w, (2)

where  is the angle between the gravity vector mg and the orthogonal line N (Fig. 1, a,
b).

It should mentioned that in Fig. 1, b the vector of the force of gravity mg, unlike all
other vectors, does not lie in the normal plane of the trajectory. Another component of the
centrifugal force in the projection on the ort P acts in the tangential plane z and balances
the component of the force of gravity mg. Thus, the forces in the projection on the ort
P can be written by the equation:

mv’k sin & = mg cos ¢, (3)
where ¢ is the angle between the gravity vector and the orthogonal point of P the
Darboux trihedron.

By substituting (2) into (1) and adding equation (3), we obtain a system of equations,
which after reduction by mass m takes the form:

v%z gcosy — f (v’kcose + gcosm);

(4)

v’ksine=gcose .
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The expressions k cos e= k ,and k sin e= k , in differential geometry are called,
respectively, the normal and geodesic curvatures of a curve on the surface [5]. These
expressions are projections of the curvature of the curve onto the corresponding
orthogonals of the Darboux trinedron . The apparatus of differential geometry makes it
possible to find them through the first and second quadratic forms of the surface, which
allows avoiding cumbersome transformations when finding expressions separately for the
curvature k and the sine and cosine of the angle ¢. This approach to finding the normal and
geodesic curvatures of a trajectory is shown in [6]. In this article, we will consistently
define all the expressions included in system (4). Since the trajectory lies on the surface of
a cone, the expressions for the angles &, v, ¢, @, the velocity v and the curvature k of the
trajectory must be expressed in terms of one of its parameters. We write the parametric
equations of the cone as follows:

X =UC0SyCcosq; Y =ucosysin «; Z =usiny, (5)
where « is the angle of rotation of the surface point around the OZ axis; u — length of the
straight-line generator of the cone — variable parameters; j~ the angle of inclination of the
generating cone to the horizontal plane (Fig. 1, a) — a constant value.

We express the partial derivatives and the arc differential of the trajectory by the
equations:
X, =-ucosysin e, Y, =UCo0SyCcosa; Z, =0;
X, =C0Sycosq; Y, =cosysing; Z =siny; (6)
ds® = du® +u®cos® y da’.
As can be seen from the expression of the differential of the arc (6), geometrically it
can be represented as the hypotenuse of an elementary right-angled triangle (Fig. 1,c).
From Fig. 1,c we can write:
du=ucosy- ctgs- da, where u = ae®/! @9 4o (7)
where S is the angle between the trajectory and the generator of the cone; a is the
integration constant, which affects the distance of the point from the origin (the vertex of
the cone) along the straight line generator.
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Having set a certain dependence f= A( a) , we thereby set a line on the cone. After

substituting (7) into (5), we can write the parametric equations of the line:

cosy [ctgB-da cosy [ctgf-da

X = acos e coS o y =acosje sin

z = asin ™", ®

Our task is to find such a dependence S = f(«), at which the line (8) would be a
trajectory, i.e. satisfy the system (4). To do this, we will find the first and second
derivatives with respect to the parameter « of equations (8), which are needed to
determine the curvature k of the trajectory and the angles ¢, v, ¢, :

X' = acos e (cosyctgBcosa —sin a);

cosy[ctgs-da

y' =acosje (cosyctgSsin a + cosa);

z' = asin ¥ COS }’Ctgﬂ . eCosyIctgﬂda;

B 2 2 s 2
cosy(ctgpda| COS™ 7 COS™ B — B'COSy —sin”

X" =acosje — Cosa —2cosctgpsina |;

i sin® g 1 (9

B 2 2 ' i 2 T

4a| COS® ¥ COS® B — B'COSy —sin :

y" = acos e 4 'B_ ? 4 'BS|na+20087Ctg,BCOSa ;

i sin” g |

2
cosy | ctgB-da cos ﬂCOS]/ - ﬂ,

2" =acosye sin’ 3
Substituting (9) into the well-known formula [5] , after transformations and

simplifications we will find trajectory curvature:
k= acos;lenwls[fj clofda

J(B'+cosy)? +sin’ysin® B, (10)

Derivatives (9) completely determine the direction of the principal normal n. The
coordinates of its direction vector are also found by well-known formulas [5]. After
reducing the principal normal vector to the unit vector, its projection can be written by the
equations:
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M= _\/(ﬂ'+cos7,s)izniinz s’ B [ctgB(B’ +cosy)sina + (1+ B cosy)cosal;
e J(ﬂ'+cos;)i?iin2 ysin? B [ctgB(5' +cosy)cosa — (1+ B’ cosy)cosal; (11)
p'sinysin g

z

) J(B +cosy) +sin? ysin® g

The direction vector of the Horta t is the first derivatives (9). The direction of the
vectors N and P is found as the vector product of two vectors: for N - the vector product
of two vectors tangent to the coordinate lines of the cone (these are the first and second
lines of (6) ) ; for P - the vector product of the vector t and the found vector N Omitting
the operations for finding vectors, we write down the finished results (vectors reduced to

unit vectors):

N, =-sinycose; N, =-sinysing; N, =cosy;
P, =—cosysin B-cosa —cos Ssin a; (12)
P, =—cosysin S -sin a +cos B cosa; P, =—sinysin g.

Knowing the coordinates of the vectors, we find expressions for the required angles

between them (the coordinates of the gravity vector will be {0, 0, - 1} ):

sin ysin g . S’ +cosy _
CoS¢ = _ _ ;sine = _ _ ;
J(B'+c0sy)? +sin? ysin? B J(B' +cosy) +sin?ysin? g (13)
COS@ = —sin ysin f; COSy = —sin y Cos f3; w=y.

We have found all the expressions for the angles and curvature of the trajectory
included in system (4) through the dependence f= f(«a) . We will do the same for the arc
differential ds included in the first equation of system (4). Substituting du from (7) into the
arc differential expression (6), we obtain:

sin S

We substitute the arc differential expression from (14), the angle expressions from

(14)

(13) and the curvature from (10) into system (4). After simplifications, we obtain a system
of two differential equations, which includes two unknown functions: = f( «) andv = v (

Q) -
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2
vﬁ = —ug sin y cosyctgpf — f(v2 sin ¥ sin +ug C(?S 7) ;
da sin

4 _ (15)

Vz _ ug SN }/COSJ/ e U= eCOSyICtg/iia.

L' +cosy
Let's introduce new variable W= thgﬂ -da , from where:
W =ctgB, pB'=- . sin g = _t (16)
, 1+w?’ 1+wW'? .

By substituting expressions (16) into system (15), we will give its form, convenient
for integration into the environment MatLab using the SimuLink package:

a . vsin a
v = -2 wsin ycosy-e"” — f ELALIVAC R yA1+W'? e |
v N1+w? v
(17)
ag .
w" = c057(1+ w'? {1— —?sm y- e”“"”).
v
H,
MZS %
v,
MmI/C
=0,1
15f =03 1
=0,2
10f
5.
O0 5 10 1'5 20 25 a
a b C

Fig. 2. Graphs of dependences on the angle a , constructed as a result of
integrating the system (17) under the given initial conditions a=50; y=70 °;
vV ,=20 m/s:
a — trajectory of motion of a material particle at f =0.1;
b — dependence of the height of particle lift with different friction coefficients;
¢ — graphs of changes in particle velocities with different friction coefficients
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Numerical integration system (17) was found dependencies v=v(a) and w=w(q).
The model that performs integration, three integrators are included, at the input whose
need specify three constants integration. They define weekend conditions: point on the
surface, direction movement material particles in it and the initial speed. Substitution

found dependencies w = j ctgf - dain (8) gives the trajectory of the particle's motion

along the internal surface of the cone under given initial conditions. Analyzing the
trajectory of the particle, we can conclude that it is significantly different from the
trajectory of movement along the inner surface of the cylinder [4]. Fig. 2 shows the graphs
- the result of integrating the system (17). Fig. 2,a shows that a particle entering the inner
surface of the cone at an angle of 90 ° to its generator, begins to move up, and then
descends down. Fig. 2,b shows the graphs of the change in height depending on the angle
of rotation «, from which it is clear that with a decrease in the friction coefficient, the
height of the rise increases. In addition, during the downward movement of the particle
there may be local rises. The graphs of the change in speeds (Fig. 2,c) also show the
difference between the movement of a particle along a cone and the same movement along
a cylinder. If, upon entering the surface of the cylinder, the particle damps its velocity to a
certain limit, and then it begins to increase again [4], then during movement along the
cone, the velocity of the particle has a certain periodic character and approaches zero over
time. It is interesting to study the regularity of the particle movement along the inner
surface of the cone at f=0, i.e., when its surface is absolutely smooth. In this case, the first
equation of system (17) takes the form:

v __agdwg, yCcosy-e"™ abo vdv=-agsinycosy-e"*’dw.  (18)
da v da

After integrating the right and left sides of equation (18), we have:
v? =-2agsiny-e"* +c a60 vi=c—-2¢gH, (19)
where ¢ is the integration constant; A is the height of the particle descent, which
according to the last equation (8) is equal to the coordinate z taken with the opposite sign
(since the direction of the Oz axis does not coincide with the direction of the particle

descent). The second equality (19) expresses Galileo's law, according to which the velocity
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of the particle does not depend on the shape of the trajectory in the absence of friction
(depends only on the initial velocity v ,and the height H of the particle) [2]. Substituting
(19) into the second equation of system (17), we have:
3agsiny -e"™ +c
2agsiny -e" +¢

W" = COS ;/(1 +w'? ) (20)

In the differential equation (20) there is no independent variable «, therefore, by

substitution

W' =p; w" = pd—IO (21)
dw

equation (20) reduces to a first-order differential equation:

dp (1+ IC)2)3ag siny-e"™ +¢

—— =CO0S : . 22
P dw 4 2agsiny -e"™" +¢ (22)
After separating variables and integrating (22), we obtain:
2abg(1+ p? o
9L+ D7) _ goucosr 23)

2ag-e" +c

where b —another constant of integration. Substituting in (23) instead of p its value

p=w’ from (21) leads to the expression, which, unfortunately, cannot be integrated in
elementary terms functions :

dw

\/b . eSWCOSy + bC-e2W0037 _ 1
2agsin y

=da. (24)

However, when ¢=0, integration of expression (24) becomes possible. In this case,
we lose the generality of the solution and obtain only partial result:

o 2Arctg(x/b-e3w°°” —1) |

25
3cosy (23)
Let us find from (25) the dependence w = w (a):
W:3 L In 31 , OTKe e"*Y = 13 . (26)
cosy bcosz(zacos;/] 3&/Bcosé(zoccos;/j
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By substituting second expression from (26) into (8), we obtain the trajectory
movement particles on the inside surface of the cone in the absence of friction:

_acosycosa . acosysina . _ asin y
2/b cos” Gacos 7/) 3/b cos” Ga cos 7/j 2/b cos” Gacos 7/)

(27)

Analyzing equation (27), we can conclude that at a certain value of the angle « the
denominators become zero, and the trajectory of the particle along the cone goes to
infinity. In Fig. 3, a, a limited section of the trajectory is constructed using equations (27)
for different values of the integration constant b. To obtain the general solution ' We
integrate system (17) numerically using the SimuLink package at f =0. By changing the
direction of motion at the initial point, the trajectories shown in Fig. 3, b-d were obtained.
As can be seen from these figures, a particle in the absence of friction and air resistance
performs an oscillatory motion, alternately rising and falling along the surface of the cone,
describing a certain number of branches. The particle can return to its original position,
describing a finite number of branches, or not return, describing an infinite number of
branches and moving for an arbitrary long time. This is the main difference in the motion
of a particle compared to a cylinder [4]. As can be seen from Fig. 3,b-d, at the same initial
velocity, the particle rises along the surface of the cone by the same amount regardless of
the number of branches describing it (this also follows from Galileo's law). In the presence
of friction, the particle will fall down, although the oscillatory nature of the motion may
persist (especially at a small coefficient of friction). Fig. 3,e shows the trajectory of motion
at f =0.01 , from which it can be seen that the oscillations of the particle damp out over
time. Analyzing Fig. 3,a-d, which show the trajectories of the particle in the absence of
friction, at first it is difficult to understand the connection of Fig. 3,a with the others, since

there is no loop in it.
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Fig. 3. Trajectories of particle motion along the inner surface of the cone at
Vv , =20 v/s; y=45°; a =50 and different directions movement in the initial point
(view) from above):

a — trajectory constructed according to equations (27), which are a partial solution
system (17) at f=0; b — particle describes 12 branches; ¢ — particle describes 9 branches; d
— particle describes 4 branches; d — the loop degenerates into a line close to the straight-
line generator of the cone; e — particle trajectory at f =0.01 (at f =0 under the same other

conditions is shown in Fig. 3, ¢)

However, knowledge of the features of the motion particles on unfolded surfaces with
the same inclination of the generating surfaces to the horizontal plane will help in this. The
fact is that the trajectory of the particle movement can be a straight line — the generator of
the cone [7]. In this case =0 — const and the system (17) cannot be integrated, since the
expression w = ctg £ turns into infinity. When trying to provide in the initial point
movement direction by an angle S close to zero, the integration of system (17) stops, but
from Fig. 3e it is seen that the loop is so narrow that it approaches a straight line. Thus, the

partial result obtained from equations (27) and depicted in Fig. 3a is a transitional
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trajectory between the loop and a straight line. Of course, the particle cannot move
upwards for an infinitely long time (according to equations (19) the initial velocity must
also be infinitely large), but with a limited value of the initial velocity such a trajectory is
quite probable. It is worth drawing attention to the fact that such a transitional trajectory
was constructed thanks to the analytical dependencies. It is not possible to detect it during
numerical integration. This indicates that no matter what modern computers and software
products we use, numerical methods, in our opinion, will not be able to replace analytical
studies, but will only be able to successfully supplement them.

If necessary, you can determine the time of movement of a particle along the surface

of the cone:

!

ds ds de S
Ve—=———| where t=| —da.
dt de dt J v e (28)

Substituting the arc derivative from (14) into (28) taking into account (16), we obtain:

V1+w'?
ewcos;/da,

t=ac03yj .

(29)

where v = v (a) — dependence of the particle velocity change, which is determined by
numerical integration of system (17). Thus, we can find the main parameters of the particle
motion: the trajectory given by the equationsx =x(a );y=y(a)andz=z (a); speed v
=V (a);time of motiont =t (a) . All these dependences in the form of graphs can be
obtained using the SimuLink package MatLab environment. MatLab allows you to not
only build a trajectory, butalso do it in the form of animation using the comet 3 command.
However such The trajectory, although constructed correctly, is unreliable. will reflect
movement particles about the curve, since dependencies X, y, z are functions of the angle a,
not of the time t. Possibilities MatLab allows us to solve this problem as well. With the
help of functions interpolations interp 1 you can reassign the equation of the trajectory x,
y, zZ depending on the new independent variable - time t , that is, in fact, eliminate the
parameter a. Reproducing using the comet 3 command movement particles along a cone,
equation trajectories which are functions of time, we will get a real picture of such a

movement on the surface of the cone.
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Conclusions and perspectives. In the absence of friction and air resistance, a
material particle, after entering the inner surface of the cone at a certain angle to the
generator (except zero), performs an oscillatory motion, alternately rising and falling along
a trajectory in the form of a loop, moving for any length of time. Depending on the initial
conditions, the particle can describe a finite number of branches of the loop, an infinite
number of branches, move along a straight-line generator of the cone or along an
intermediate trajectory between a straight line and a loop. In the presence of friction, the
particle will descend down to the top of the cone, while local rises are possible, the
magnitude of which will depend on the initial velocity and the angle of inclination of the
generators of the cone. The velocity during such a motion will decay, while also having an
oscillatory character.
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3HAXO/KEHHS TPAEKTOPIN PYXY MATEPIAJIBHOI YACTUHKHA I1O
BHYTPIIIIHIA ITOBEPXHI KOHYCA I3 BEPTUKAJILHOIO BICCIO ITPH
BOKOBIH IIOJAYI MATEPIAJTY
C. @. Ilununaka, A. B. Hecgioomin
AHoTauiA. Pyx mamepianbHux 4acmuHOK NO GHYMPIUWHIU NOGEPXHI KOHYCcA MA€E
Micye y YUKIOHAX, KOHCMPYKYIL AKUX MOXCYMb MAMu 5K YUNIHOPUYHI, MAaK i KOHIYHI
yacmunu. Aepoounamiuni npoyecu, Aki 8100y8aomvCs y YUKIOHI, MAOMb CKIAOHULL
xapakmep, Mmomy ix He MONCHA MOYHO 3MOO0eN08AMU HA OCHOBL MeopemuyHux nioxooie
llpu OocniodocenHnsx 0yn0 68e0eHO psd CHPOUeHb: He BPAX0BYEMbCS ONIp NOBIMpA,
OCKIJIbKU YACMUHKA NOOAEMbC Y KOHYC PA30M I3 NOBIMPSIM, X0Ud Y NOOAIbULOMY IX
Hanpsamu pyxy He 30iearomuvcs (YacmuHka 2acums WEUOKICMb I ONYCKAEMbCS 6HU3, d
NOGIMPsL NO YEHMPALbHIL YACMUHI 8300824C OCI KOHYCA NiOHIMAEMbCSL 820pPY I BUXOOUMb
HA308HI),; 8NJIUE YACMUHOK OOHA HA OOHY, IX pO3MIp mMouyo.
Memoto cmammi € 00Ci0AHCeHHS PYXY MAmMepiaibHOi YACMUHKU, KA 8CMYNAE HA
BHYMPIUHIO NOBEPXHIO BEPMUKATILHO20 KOHYCA 13 3A0AH0I0 NOYAMKOBOIO ULBUOKICIO.
Axwo mamepianvHy YacmuHKy CHpAMy8amu 3 NOYAMKOBOI WBUOKICMIO Ha
BHYMPIWHIO CMIHKY KOHYCA NEePpneHOUKVIAPHO U020 MEIPHIU, Mo nooarviull ii pyx
gKIIOYAMUME SIK 00ePMAHHS HABKOIO OCI KOHYCA, MAK I ONYCKAHHs 6HU3 Ni0 Ji€l0 CUlU
61aCHOI 8azu. J[s 3HAX00HCEHH MPAEKMOPIL PYXY NPUUHAMO MAMePIalbHy MOYKY 3d
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gepuiuny cynposiono2o mpuepanHuxka dpene, AKUNU MAE MPU B3AEMHO NEPNEHOUKYIAPHI
opmu. [pyeuii cynposionuu mpuepanuux /lapoy mae cninvuuil i3 mpuepanuuxom Opene
opm OOMUYHOI 00 MPAEKMOPIL.

byno posensnymo pisnoseazy 0itouux cui 8 Npoekyisix Ha opmu mpucpaHuuxka /apoy.
L]e 0ano 3mo2y eusHawumu npoekyii KPUGUHU KpUeoi Ha 810N0BIOHI OpmMU MPUSPAHHUKA
Hapby. Anapam oughepenyianvHoi ceomempii 0a8 MONCIUBICMD iX 3HAUMU Yepe3 nepuLy i
opyey K8AOpamuuti (hopmu nOBEPXHI, W0 00380JIE€ YVHUKHYMU SPOMIZOKUX NEPEemBOPEHD.

Cknaoeno ougepenyianvui piHAHHA pYXY MAmMepiaibHoi YaCMUHKYU NO 6HYMPIUUHIU
NOBEPXHI 6EPMUKATbHO20 KOHYCA. Pisnsnus poss sizani 3a donomoeoro cucmemu MatLab.

Ompumare pi8HAHHA PYXY YACMUHKU NO BHYMPIWHIU NOBEPXHI KOHYca. AHANi3youu
MPAEKMOPII0  pPYXy UYACMUHKU, MONCHA 3POOUMU BUCHOBOK, W0 BOHA CYMMEBO
BIOPI3HAEMbCA 810 MPAEKMOPIL pYXY NO BHYMPIWHI Ui nogepxHi yuninopa. I pagixu 3minu
WBUOKOCmel mediC NOKA3YIMmMb 8IOMIHHICMb PYXY YACMUHKY NO KOHYCY 810 MAK020 JHC
pPyXy no yuninopy. Akwo npu ecmyni Ha no8epxHIo YUiiHOpa YACMUHKA 2ACUmMb C80I0
WBUOKICMb 00 NEGHOI MediCl, a NOMIM 80HA 3HOBY NOUUHAE 3POCMAmMU, Mo Ni0 4ac pyxy no
KOHYCY WBUOKICMb YACMUHKU MA€E HNeGHUU NnepiooudHull xapakmep i 3 4acom
HAOIUNCAEMBCS 00 HYJIAL

3a eiocymnocmi mepmsi i onopy nogimps MamepianibHa YacmuHKa nicis 6CMyny Ha
BHYMPIWHIO NOBEPXHIO KOHYCA NiO NeBHUM KYMOM 00 MBIPHOI (Kpim HYAs) 30iUCHIOE
KOJUBAILHULL PYX, NOYep2080 NIOHIMAIOUUCH | ONYCKAOYUCL NO MPAEKMOpPIT V 8U2/A01
nemiui, pyxaluuco nNpu yboMmy 5K 3a68200HO 00820. 3aNeHCHO IO NOUAMKOBUX VMO8
YACMUHKA MOJICe ONUCY8amu KiHYegy KiJIbKIiCMb GIMOK Nemii, HeCKIHYEeHHY KIJbKICMb
8IMOK, pyXamucs no NPSAMONIHIUHIU MBIPHIL KOHYCa b0 NO NPOMIICHIU MPAEKMOPIT MIdHC
NPAMOIO JILHIEIO | nemJero.

3a nasenocmi mepmsa uacmuHka 0yoe onycKamucs 6HU3 00 epUIUHU KOHYCd, NPU
YbOMY MOMNCIUBL JIOKANbHI NIOUOMU, BENUYUHA SAKUX 3anedcamume 8i0 NoYamkKosol
weuoxkocmi i Kyma Haxuiy meipuux kouyca. Illeuoxkicme npu maxomy pyci 6yoe
3amyxamu, MarO4u NPU YbOMY MAKONHC KOIUBALbHUU XapaKmep.

KarowoBi ciioBa: mamepianona uacmunka, Konyc, mpuzpannux /lapoy, pieHaHH
DPYXy yacmuHKu
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