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Annotation. A analytical, algorithmic and software simulation of a particle on
any stationary rough surface as a function of time, the position of the particles on the
surface and the direction of its movement. Algorithm worked out by the example of
the inclined plane.
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modeling

In many industrial processes there is motion of material on rough working
surfaces of complex shape, particularly the movement of granular materials through
pipelines, supply of fertilizers scattering to drive grain separation inclined vibrational
planes. Understanding the patterns of movement of particles (as of a point) on the
rough surface of an arbitrary position in three dimensions allows purposefully to
calculate structural and kinematic parameters of working bodies.

Analytical output law of motion of a particle on the rough surface is reduced to
drawing up a system of differential equations of 2nd order desired dependency which
Is the trajectory of the particle, its velocity, acceleration, length of the path, the force
of normal reaction, the move to its stop and other trajectory-kinematic characteristics
. The sequence of analytical output of differential equations and ways of its solution
IS quite time consuming. Over the past decade (during the emergence and
development of computer technology) significant changes in research methods
formalization of a particle on rough surfaces of complex shape have occurred. In the
current study every scientist personally performs differently cumbersome analytic
transformation of the formation law of a particle, the complexity of which essentially

depends on the shape of the surface. So for surfaces, which were studied motion of a
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particle is limited by a plane of rotation of the cylinder, cone rotation, screw cone,
helicoid.

The purpose of research — to develop computer models of a particle on a
fixed plane rough arbitrary position.

Materials and methods of research. Based algorithm for automatic
generation of a particle in law random surface R (u, v) in media computer
mathematics charged trihedron trajectory. It is advisable to use the two
accompanying trihedrons (Fig. 1): a) OuvN — ort Ou and Ov is adjacent to u, v -
coordinate lines surface: b) trihedron Darboux OTPN — ort OT is a tangent to the
trajectory r particle sand ort sand OP is normal to the trajectory r in tangent plane u
(OuvN=0OTPN) surface R (u, v). ON ort normal to the surface is common to both
cover trihedrons, because in every moment of elementary particle carries a tangent

plane displacement surface u R (u, V).

Fig. 1. Cover trihedrons on the surface of the particle trajectory:

a) OuvN; b) OTPN; c) coordinate differentials surface lines

Results. Any curvilinear trajectory r particles on an arbitrary surface R (u, v)
can be expressed in analytical dependence f (u, v) = 0, which connects the inner u and
v coordinates curved surface R (u, v) as a function of a given independent parameter
(argument). If this parameter is the time t, then the desired internal paths are
depending on the type: u = u (t), v = v (t). For independent option will also take
curvilinear coordinate u or v - curvilinear coordinate, where the trajectory of particles

in the inner u, v — surface coordinates R (u, v) respectively have the
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formu = u(v),v =v and u =u,v = v(u). Forsurface R (u, v) of orthogonal u, v
- coordinate lines related to differentials (Fig. 2) the dependence determined

\.Edl,‘

= cfg(rz(u)), where E, G - 1st coefficients quadratic form surface R (u, v),

JVEdu
attributed to the orthogonal coordinate grid lines. This allows you to create a
trajectory r(c(w)) particles on the surface of R (u, v) in function of independent
variable a(u) - the angle between the tangent 7 trajectory and tangent to the u -

coordinate lines. Then in the mid u, v - coordinates of the trajectory of the particles
will look like: u = u, ,v = f‘—icfg[a(u))du. If for surface R (u, v) with u, v -

orthogonal coordinate lines related +'E du differentials and differential to VG dv to

ds arc trajectory is ‘iﬂ = sin(e(w)), ‘jf“ = cos(a(w)), then the trajectory r (s)

particles as a function of the independent variable s in the inner u, v - coordinates are

u(s) = J

Each of the above approaches formation trajectory r particles in the inner u, v -

as, v(s) = [ <2229 g5
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curved surface coordinates R(u, v) has advantages at the expense of independent
control parameter - t, u, e, s. For example, the equation trajectory r (u) particles as
a function of the independent parameter u, which determines the position of v-
coordinate line the surface of the particle on it, you can explore its kinematic
properties on a limited part of the u = [u,,u,] and v = [v,, v,] surface R (u, v), where
[u,. v,] and [u ,v,] - inside the coordinates of the initial and final provisions of the
particles on the surface. Formation trajectories r(e) as a function of angle
ol(u)between the vector tangent z trajectory and u-surface lines coordinate R(u, V)
allowing the study of a particle in the range of o = [e,, ;,], where o, and ¢, initial
and final viewing direction moving particles. For example, when

o, = 0 particle begins its movement along the v-coordinate line, while
er, = m/2- U -coordinate along the lines of the surface R (u, v).

For moving particles on the surface of R(u, v) on ort normal vector N defined

length F,;, the amount of force that characterizes normal reaction:
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ON = Fy = F, cos(N,G) £ F. cos(N,n). (1)

The "+" or "-" characterized by direction vector directed centrifugal force

F.cos(m, N') with respect to the surface normal vector N - pressed to the surface of a

piece or separates from it. Negative values F,, expression (1) means lead particles
from the surface.

The vector equation (1) of a particle on time t in projections for orts u = R,

and v = Ry, trihedron OuvN will look like:

{G'u = mW cos(R.,w) =F cos(R.,G) — (fFy + qF, Jcos(R!,7) @
Ov:= mW cos(R,, w) = F cos (R, G) — (fFy + qr, Jeos(R,7)"
and the projections for T and P ort trihedron Darboux OTPN:
{OT = mW, =F,cos(G,T)— f (F, cos(GN) + F; cos(n,N)) — qF, 3)
oP == mW,sin(n,N) = E, cos(G, P) ’
where W = | W | - the value of acceleration of particles; W, = ib’[t},

d . d . . . . .
W, = V;V[_s}ﬂ-l{. = VEV(_G{}R - tangential acceleration respectively independent
parameters function of time t, the trajectory and arc scangle to the movement of
particles; W, = V2 k- normal acceleration.

Given the expressions W. tangential acceleration expression (3) of the

movement of the particles can be rewritten as a function of arc length s trajectory:

OT = mV =V(s) = E, cos(€7) - f (E cos(€N) + Fecos(n.V)) - gF,, "
0P := F.sin(mN) = E cos(G, P) ’
and a function of the angle & direction of the particles:
0T = mV —V(2)k = F, cos(G.7) — f (E, cos(6'N) + Fecos(mN) ) — aF, -

OP = F.sin(n, N) = F, cos(G, P)

The choice of reference OuvN or OTPN laws in the formation of a particle on
the surface R (u, v) only affects the appearance of differential equations (2) - (5), but
the results of their solution.

The proposed linear algorithm for determining components of expressions that

are part of equation (1) - (5) differential equations laws of a particle simultaneously
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projected on orts accompanying trihedron OuvN and OTPN, independent of the
equation R (u, v) surface (of form)

The movement of the particles on rough plane is the easiest. For the inclined
plane R(w,v) = [u, —vsin(Z

[u, —vsin(£),vcos(£)],, where & - angle vertical plane around the
axis Ox (&-90 ° angle of the plane) we obtain the following laws of differential
equations of a particle projected on orts

u and v trihedron OuvN (Fig. 1, a)
.

2 ai (e)| fmg sin(H+ql (Sule ai ) ]
Ou:= m—u(t) =— :
Gl A 2 i
| e dt i , (6)
Ov:=m sfu[r) =L a = —mg cas(&) — qiu(r) ii(iii[r))_ + (iu(r))_
Iiu £ '.i'..“:r"" N
l‘_ ar WAL 7
T and P trihedron OTPN (Fig. 2b)
“'| ?;;:.-f:_ %:.-’_:_ ?i::;n'_:_ %:-’_:_ I mg fﬁs"_f_fi;"'_:_ { d \ 2 {a \ 2
a7 = R = %—r]rgs:rk J_Q[Ill_uif: II +I|IIFL:L-{IEI
. Zul)) +(Zvte | (Zuts)] +(2v ) '
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)
el =1 :fj - L":fj
des dt det

(7)

d
)— —mg cos{ s ,Fu{*‘

The initial conditions the solution of differential equations (6) and (7)
determine, provided that the direction of the initial velocity in the inner V,u, v -plane

coordinates R (u, v) asked «, angle, for example, the tangent u - coordinate line. Then
the arc length ds trajectory r (t) at the beginning of a particle is

and the ratio differentials coordinate lines arc length ds are

ds =V, dt, (8)
d .. —=d .. —d .. —d .-
WV E—ult) v E—ulf) . ViE—wit) A G E) .
£ —_ g —_ - g —_ ] —_
ds  Vpdt sin(e,) ds  Vudt cos(e).  (9)
From the expression (10) we obtain the initial velocity and position of a
particle in the inner u, v-surface coordinates R (u, v):
1',:.3]'*.,:.' DCG.‘!'\'.DI
u(t , ot
) = P ) =

“ (o)
o} = Uy, F[to} = Vs

(11)
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where E = 1, G = 1 - coefficient of 1st plane quadratic form R (u, Vv); u,.v.- internal
coordinates of the initial position the particles in the plane.

Note that expressions (10) and(11) set the initial conditions for the solution of
differential equations laws of motion of particles on any surface R (u, v).

Find the desired dependence u (t) and v(t) of the system of differential
equations can only be approximated, such as Runge-Kutt method. There were a set of
computational experiments to investigate the movement of particles on an incline,
vertical and horizontal planes depending on the initial velocity and direction V,, o,
particles throwing its initial position u,, v, friction coefficient f and #— 90° angle
inclination plane. Fig. 2, as one of many experiments built trajectory r (t) particles
depending on the angle «, =1°,30° 60° 90°f throwing it at constant values
V, =4m/s, f = 0.3, = 60°.

c)

Fig. 2. Cover orts:
a) u and v system OuvN; b) T and P trihedron Darboux OTPN; c) trajectory r(t)

Displaying law of motion of the particles on rough inclined plane as a function

of the independent parameter u in the projections for T and P ort trihedron OTPN as:

OT:= mbl(u) ,:-%1"(“3' - g E':_M«u (1) cos (2 + Fsin(D *‘“!Ill N [;_MLELI:I]:)
.\ mg |.'1—'f?—.‘--‘":~"-.'fr | cos(d) ' (12)

OP:= mV(u)* =— -

duf - Ly

Unlike (6) - (7), the desired dependency equations (12) are speed V (u) and
coordinate v(u). Fig. 3, b is constructed trajectory r(u) and graphics speeds V(u)
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particles on an inclined plane with an angle = 60° tilt at it from a vertical position,
depending on the angle of throwinge, = 30°,45%,60°,90° at the original speed
¥, =4 m/cand friction f = 0.3. All particles under these conditions in an inclined
plane not stop - they are first rate drops to a certain size and then grow. The lowest
speed V = 0.88 m/s particles will point its position u = 1.42, then it accelerates almost
a straight line. Built trajectory r (u) in Fig. 4, confirm the fact that the greater the
friction coefficient f = 0,0.1,0.2,0.3,0.4 (V, = 43 and o, = 60°), the faster the
particle starts to slide down the plane. Note that the trajectory r (u) is based on the

range of parameter u = 0..2.5, which localizes a given region [u,..u,], Which

investigated plane motion of a particle.
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Fig. 3. Trajectories r (u) speed V(u) particles on an inclined plane

If the option to take an independent angle « (movement direction), then the law
of a particle on an inclined plane in the projections for T and P ort trihedron OTPN

will be as follows:

0T = mv(e) ilf[a]k[o_f] = —mg cos(a) cos (&) — fmg sin(F) (13)
0P:= mV () k() = mg sin(a) cos(2) .

Desired dependency equations (13) are speed V() and curvature k(c) path
that can be explicitly (which is not to be found in the function of independent

parameters t and u:

P
e e e s oo FrgmiE
Vg sini o, ) (coseci ol —etgio) < =

L"[O“] = —ftanif) (14)

zin{e) (cosecio,—crgl(o, 1
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’ v —F tanldy©
g sin(2)®{( cosec(a,)—ctgle, )~ Fe™e)
k(o) =

2 I—;’:m'.l'_g_i“' (15)

sin{z, ) (( cosec(&)—crg(a]

'-"l:l

Finding the boundary (limit) functions (14) and (15), provided that the tangent

is £ friction coefficient f (f tan(£) = 1),, leads to the expressmn
V.= limit(V(a), e =7 = T (1 — cos(e,)),, (16)
k., = limit(k(a),a= 1) = 0. (17)
Assertion. When a loose material with an initial velocity perpendicular V, to the
line of greatest slope rough plane set at an angle to the horizontal friction, each piece
after the transition to the straight path will move with constant velocity v, /2. Particles
thrown along the greatest slope of the plane (angle =, = =), will move at a constant
initial velocity V. If you throw it in the opposite direction (angle «, = 0), it will stop.
For example, the plane shows that setting surfaces R (u, v) in different
parameterization does not affect the trajectory-kinematic characteristics of a particle,
although analytical calculations differ significantly. In particular, if a flat disc

parametric equations written as:

R(u,v) = Rlv cos(u) cos(&) ,vsin(u), —vsin(u) sin()], (18)
then the law of a particle on it projected on ort u and v trihedron OuvN compared to

(6) will have a different analytical form:

s

Ou:=m [2 —ult) —vit) +vit) —ult) :I = —mg sin{u .__1'}) sin(&) —
- gt gt2

4 . ) Y

Ov:=m [ vit) —vi{t) ['_:—u ::f}) ) = mg cos(u(t)) sin(£) —
e

Fig. 4, built a trajectory r (t) particles on rough inclined disc & = 30 ° with an

initial velocity V, = 4 ~ initial position u, = m,v, = 2, friction f = 0.3, depending on

the angle o, = 0° 30°60%90°throwing particles. Sincef = 0.3 < tan(¢ = 307),
then none of the particles does not stop on the drive. Rectilinear trajectory of particles
thrown at an angle «, = 0° (up from the center of the disc) will pass through the
origin O. Changing the initial provisions (u, = 1.5m, v, = 2) particles leads to
change provisions of their trajectories r (t) (Fig. 4, b). Particles thrown in one

direction o, = 120°, but with different initial velocity V, = 2,4,6,8 m/s, different
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form the trajectory r (t) with respect to the center of the disk (Fig. 4, ). But in all
cases the trajectory of the particles on rough disk is congruent to the trajectories

particles on rough inclined plane under the same initial conditions of throwing.

Fig. 4. The trajectories r (t) particles on rough inclined disc

Conclusions
The method of computer modeling of a particle along rough surface which is
based on: 1) the inner surface parameterization: 2) supporting trihedron curves on the
surface; 3) independent parameters forming curves on the surface, which is the time

the particle position and direction of its movement on the surface.
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MOJEJIOBAHHS PYXY YUACTUHKH 11O HEPYXOMIM
IMOPCTKIN MOBEPXHITA MO0 TECTYBAHHS HA IIPUKJIAJII
MNOXUJIOI IVIOIUHNA

A. B. Hecgioomin
AHoTanis. Cmeopeno  ananimuune, anieopummiyne ma  NpoOcpamHe
3abe3neueHHs MOOeN08AHHS PYXy UYACMUHKU NO 0YOb-AKill HepyXOoMili uWopCcmKii
noGepxHi y (DYHKYII uacy, NOA0JCEeHHS YACMUHKU HA NOBEPXHI ma HaAnpsamy ii
nepemiwjents. Onpaybosanuil areopumm Ha NPUKIaoi NOXUL0I NIOWUHU.
Kurouosi caoBa: mamepianvna mouka, cynpogioHuii mpuzpaHHuk, nOXuaia

njiaouwiuna, LiOpcmKa no6epxn, MOOEN06AHHA

MOJAEJIUPOBAHUE JABUXEHUS YACTUILBI 11O
HENOJBUKHOM IHEPOXOBATOM NOBEPXHOCTHU U EI'O
TECTUPOBAHME HA IPUMEPE HAKJIOHHOM IIJIOCKOCTH

A. B. Hecéuoomun

AHHoTanusi. Co30aHo ananumuyeckoe, an2OPUMMUYECKOE U NPOSPAMMHOE
obecneyeHue MOOEIUPOBAHUSL OBUNCEHUST HACMUYbL NO JIH0O0U HENOOBUNCHOU
uiepoxoeamou NoGepxXHocmu 6 QYHKYuu 6pemeHu, NoJodCeHue Yacmuyvl Ha
nosepxHocmu u HanpasieHus ee nepemewienus. Ompaboman aneopumm Ha npumepe
HAKJIOHHOU NIOCKOCTU.

KiloueBble  cioBa:  mamepuanvHas  mouyKa,  CONPOBOOUMETbHbLIL
MpexZPAHHUK,  HAKAOHHAA  HIAOCKOCHb,  WIEPOX06amas  HOGEPXHOCHIb,

Mooenuposanue
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