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Abstract. Planetary motion of a cylinder is understood as its motionwhen itis in two
rotational motions at the same time: it rotates around its own vertical axis with a constant
angular velocity, and the cylinder axis itself rotates with a constant angular velocity
around a vertical fixed axis. The movement of the particle will be complex and will consist
of its relative movement along the inner surface of the cylinder and the translational
movement of the cylinder itself. Such a drive scheme is used in cylindrical sieves for
sorting seeds of agricultural crops.

Problems on the complex motion of a particle can be successfully solved using the
trihedron and Frenet's formulas.

The purpose of the study is to establish the complex movement of a material particle
along the inner surface of a cylindrical sieve using a trihedron and Frenet's formulas at
the same and different angular velocities of transfer and relative rotation of the sieve.

A characteristic feature of the application of the trihedron and Frenet formulas is
that the independent variable in them is not timet, as is generally accepted in problems of
kinematics and dynamics of a point, but the length of the arc s of the directional curve (in
our case, a circle of radius R), so the relationship was established the connection between
rotational movements through this parameter.

The system of differential equations is integrated by numerical methods. An exact
analytical solution was found in the case when the motion of the particle stabilizes and its
speed becomes constant. The obtained results were visualized.

Some regularities of the relative and absolute motion of a particle in a cylindrical
sieve were establishedwhen the angular velocity of rotation of the cylinder around its own
axis is zero and is not equal to zero.

In the first case, it was found that the particle on the surface of the cylinder occupies
a positionatwhichitisas far as possible from the axis of rotation of the cylinder around
a vertical line and then it moves down the plane of the cylinder uniformly accelerated,
uniformly or uniformly decelerated until it "sticks" depending on the value angular
velocity.

In the second case, the particle behaves similarly: it remains at the maximum
distance after the motion is stabilized. At the same time, it slides along the surface of the
cylinder with a constant relative speed along a helical line. The direction of the rise of the
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helical line changes to the opposite when the direction of the angular velocity of the
cylinder changes. Such movement is possible in a certain range of angular velocitiesof the
particle and the cylinder. As the angular velocity of the particle increases, there comes a
moment when it cannot maintainthe described state of sliding and begins to move along
the surface of the cylinder with stopsand is prone to "sticking". This state occurs sooner
when the angular velocities of the particle and the cylinder have the same direction, and

later when they are directed in opposite directions.
Key words: accompanying Frenet trihedron, cylindrical sieve, particle motion
trajectory, cylinder motion velocity, particle motion velocity

Topicality. Planetary motion of a cylinder is understood as its motion when it is
simultaneously in two rotational motions: it rotates around its own vertical axis with a

constant angular velocity o , and the cylinder axis itself rotates with a constant angular

velocity waround a vertical fixed axis. The movement of the particle will be complex and
will consist of its relative movement along the inner surface of the cylinder and the
translational movement of the cylinder itself. This drive scheme is used in cylindrical
sieves for sorting seeds of agricultural crops [1].

Analysis of recent research and publications. The theory of the complex
movement of a material particle along the rotating surfaces of the working bodies of
agricultural machines is considered in fundamental works [1, 2]. In the work [1], the
kinematics of a material particle along the inner surface of a cylindrical sieve is described
in detail and the relative trajectory of movement on its sweep is constructed. At the same
time, it was meant that the angular velocities of both rotational movements have the same
direction. In work [3] it is shown that the problems of complex motion of a particle can be
successfully solved using the trihnedron and Frenet's formulas.

The purpose of research is investigate the complex movement of a material particle
along the inner surface of a cylindrical sieve using a trinedron and Frenet's formulas at the
same and different angular velocities of translational and relative rotation of the sieve.

Materials and methods of research. Since the axis of the moving cylinder rotates
around the fixed axis O z, the center of the upper base of the cylinder (point A) describes a
circle of radius O 4= R =1/k , where k is the curvature of this circle (Fig. 1, a). Let's take
this circle as the trajectory of the transferable movement of the cylinder and construct the
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corresponding Frenet trihedron of this circle at point A. Then any point of the cylinder can
be written in the projections on the vertices of this trihedron:

p. =rCcosy; P, =rsiny; P, =U, (1)
where p , p ip, —the projections of the point of the cylinder on the orthos of the
tangent 7, the main normal nand the binormal, b respectively;

w is the angle of rotation and u is the distance along the generating line of the
cylinder — variable independent parameters of the cylinder.

Fig. 1. To determine the relative motionof a particle along the inner surface of a
cylinder performing planetary motion:
a - diagram of the planetary motion of the cylinder;

b - the initial moment of the particle’s relative motion: the vertices of the companying
trinedron and the axis Oxyz systems are parallel; the particle is located at the origin of the
coordinates of the Oxyz system;

C - he particle in relative motion turned to the angle a; axes Ox and Oy have turned to
an angle ¢

A characteristic feature of the application of the trinedron and Frenet formulas is that
the independent variable in them is not time t, as is generally accepted in problems of
kinematics and dynamics of a point, but the length of the arc s of the directional curve (in
our case, a circle of radius R), so we need to establish relationship between rotational
movements through this parameter. Let the cylinder itself make n revolutions in one full

revolution of the Frenet trihedron (point A, which is the origin of its coordinates). Then
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there will be a relationship between the angular velocities. . =nw.In the same time t,

point A and point B on the cylinder will turn to the corners in their rotational movements:

v, = ot; W, =wt=naut (2)

For the trajectory of the transfer movement (circle of radius R), the length of the
trajectory will be determined from the expression:

s = Rat = “t, where from (=K (3)
k 1)

By substituting the expression for time t from (3) into the second expression (2), we
obtain the dependence of the change in the angle y of point B on the position of the

trinedron on the transfer trajectory:

W, =nks = ks, (4)
@

Thus, at the current arc coordinate s, point A in the translational motion will turn to

an angle, y, =ks,and point B in relative motion will turn to anangle -, = ® s (Fig. 1, b).
(0

If there is a particle on the inner surface of the cylinder, it can either slide on its
surface or "stick". In the case of sliding, the particle will lag behind point B by an angle «
(Fig. 1c). When it is located at point C, you can write:

(pzws—a:wrks—a. (5)
@

By substituting the angle ¢ from (5) into equation (1), w,,we obtain instead the

projection of the particle onto the vertices of the accompanying trihedron:

P, = rcos(% ks — 05); o, = rsin(% ks — aj; 0, =U. (6)

If the equations of motion of a particle in the system of the accompanying trihedron
are known, then its absolute acceleration can be found using known formulas in the
projections onto the vertices of this trihedron [3]:

w, =v*[p! ~kikp, +2p; )]
w, =Vv*[p} +k(1~kp, +2p)} (7)

2 n

W, =V 0y,
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where v is the speed of movement of the top of the trihedron in a circle of radius R
=1/k.
The first and second derivatives of equations (6) will be:

o= —r(ﬂk - a’jsin (& ks — aj;
@ @
ol = r(ﬂk —a’jcos(& ks—aj;
@ w

4 !

Py =U, (8)

2
p;’:—r{—a”sin(ﬂks—aj+(&k—a’j cos(ﬂks—aﬂ;
) 0 )
2
ol = {—a”cos(& ks —a)—(ﬂk —a'j sin(ﬂ ks —aﬂ;
@ w w

pt;! — u”.
By substituting (8) into (7), we obtain the projections of the absolute acceleration
vector of the particle on the axis of the trihedron:

w =V’ roc”sin(ﬂ ks — aj — r(k + k- a’) cos(ﬂ ks — aﬂ;
@ [0 @

2
W, =V*| - roc”cos(a)r ks—a] - r(k + %k —a’j s.in(wr ks —a} + k}; 9)
() () ()

To compile the differential equation of motion of a particle in the form mw=F,where
Is w-the vector of absolute acceleration, F —is the vector of applied forces, it is convenient
to project these vectors onto the axis of the moving system Oxyz . This is explained by the
fact that the relative motion of the particle occurs in a plane tangential to the cylinder.
Such a plane is the plane Oyz of the moving system Oxyz . The component of the absolute
acceleration along the Ox axis will be normal to the surface of the cylinder, so the pressure
on the surface will depend on it.
The projections of the absolute acceleration vector on the axis of the Oxyz system can
be found using the well-known formulas:
W, =W_COS¢ + W, Sin ¢;

10
W, =—W_sin ¢ + W, coso, (10)
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where g is the angle between the axes Ox , Oy and the axes 7, n.
Substituting (9) and (5) into (10), we find the projections of the absolute acceleration

on the axis of the moving system Oxyz:

B 2
w, =V — r(ﬂk—a'+kj +ksin(ﬂks—aﬂ;
w w

W =V —ra"+k cos(ﬂ ks — aﬂ; (11)
(0]

The projections of the absolute acceleration on the axis Oz and ort bare the same,
since Oz || b.

Let's find the projections of the applied forces.

The weight of the particle mg, where g = 9.81 m/s ?, in the projections on the axis of
the Oxyz system , will be written:

0, 0  -mg} (12)

Since the friction force is directed tangentially to the trajectory of the particle's
relative motion in the opposite direction, we will find the projections of the tangent vector.
They are determined by the first derivatives (8) under the condition that the angle

o =% ksand its derivative , - % are equal to zero (this determines the sliding of the
[0 w

particle along the cylinder), so the vector projections will be written:
{~ra'sina; —ra’'cosa; U'}: (13)
Let's move from projections in the trinedron system to projections in the Oxyz system.
Todo this, we apply the transition formulas (10), taking in them the angle (— a ) instead of
the angle ¢ due to the above-mentioned reasons. After performing the transition and
bringing the vector to unit, its projection in the Oxyz system will be written:

(14)

ra’ u’
0; — ; :
As can be seen from (14), this vector is located in the Oyz plane, which is tangent to
the cylinder at the point O where the material particle is located (Fig. 1, c).
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Knowing the absolute acceleration vector (11) of the particle, the applied forces and

the direction of its movement in the Oxyz system, you can make a differential equation in
projections on the axis of the Oxyz system:

mw, =—N;
mw, =—(fN),; (15)
sz :_(fN)z - mg’

where (fN) i(fN),are the components of the friction forces on the Oy and Oz axes ,

respectively, and N is the reaction force of the cylinder surface on the particle, f is the
friction coefficient. From the first equation (15), we find N =- mW,. Taking into account
the direction cosines (14), the components of friction forces on the axis Oy and Oz will be

written:
fmra’
fiN) =———=W;
( )V /rzarz +U'2 X (16)
fmu’
fN) =——————W..
( )Z /rzarz +U’2 X
By substituting (16) into (15), we obtain a system of two equations:
fmra’
mWV - r2a'? +u' X1
f (17)
mu’
mW =— W _ —mg.
z /rzarz +U'2 X g

We reduce both equations (17) by the mass of the particle m , substitute expressions
(11) into them, and after reductions and transformations we obtain (bearing in mind that

v=2):
k

k 1)
a"=—cos| —ks—a |+

r ®
fa' i . (w @ ?
4= |ksin| Zrks—a |-r| Zk—a'+k | [; (18)
| (i) 2 ”

u"=- + fu’ ksin(ﬂks—a)—r[a)rk—a#k)z
> /rzarz Tu? ) ) )
In the case when the surface of the cylinder is completely smooth (f =0), equations

(18) are greatly simplified. In particular, the second equation becomes independent of the
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first and after integration acquires the form: - gk” 2 After substituting the expression s
20°

from (3) into it, we obtain: u :%,Therefore, in the absence of friction and resistance of

the medium, a particle along the wall of a cylinder in the vertical direction moves
downward according to the law of free fall, and in performs oscillations in the transverse

direction, which are described by the differential equation (jj f‘ = Ecos(ﬂ ks — aj.
S r )]

Research results and their discussion. Integration of equations (18) by numerical
methods made it possible to find out some regularities of the relative and absolute motion
of a particle in a cylindrical sieve.

1. Angular speed of rotation of the cylinder around its own axis o _=0.

In this case, the cylinder does not rotate around its axis, and its core rotates around
the Oz axis with an angular velocity w. The relative movement of a particle on the inner
surface of the cylinder can be divided into two directions: down parallel to the axis and
oscillations in the transverse direction. The total relative speed can be determined by the
formula [3]:

v, = Ve u, (19)

When a particle hits the surface of the cylinder at point O (Fig. 1, b), it begins to move
along the surface of the cylinder, trying to take a position in the radial direction under the
action of centrifugal force, that is, it must return to 90 °. Calculations showed that the
particle turns to a slightly larger angle, makes certain oscillations, and then its movement
stabilizes at the 90 ° ™ (Fig. 2a). Studies have shown that the relative velocity v, (19)

depends on the angular velocity « . At a small angular velocity w, the particle moves with
uniform acceleration after stabilization (at » = 6.5 rad/s in Fig. 2b). With an increase in
angular speed, it can move uniformly decelerated up to a complete stop (“sticking™). In
Fig. 2b, the graph for @ =6.7 rad/s corresponds to this case . It is possible to analytically
find such an angular velocity, when the particle will move with a constant relative velocity
after stabilization. In this case, the weight of the particle is balanced by the force of its
friction on the surface of the cylinder. Since the friction force depends on the pressure on
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the particle due to the action of the centrifugal force, the equilibrium equation can be
written in the form: fme?(R +r)=mg. From here we find the angular velocity w at given

R, r and f (in Fig. 2b, for this case corresponds to w =6.603 rad/s ). Oscillations in the
transverse direction for these three modes of motion practically coincide (shown in Fig.
2a). In fig. 2, ¢ shows the trajectory of the movement of the particle on the sweep of the
cylinder, obtained by deposition in the horizontal direction of movement of the particle ra
, and in the vertical direction - downward movement « . These trajectories practically

coincide.
0
3 O\, radian’ ) T T 45 v, T T . . 05
4_M-(T _
23 | 12=6.5 ] -1
2l ] 3l ] -1.5
251 1.=6,603 1 -2
1.5
2 L -25
1t 1 15 A
1 X =6.7 ]
0.5 E -3.5
05 ]
0 ) ) , ) s . ) ) ) s -4
0 5 10 15 20 25 0 5 10 15 20 25 -05 0 05 1
a b Cc
Fig. 2. Modes of motion of the particle at o, =0; k=0.2;r=0.25;f=0.3; ® =
6.5; 6,603; 6,7:

a — graph of particle oscillations on the surface of the cylinder;
b — graphs of changes in the relative velocity of the particle;
c — trajectory of movement on the sweep of the cylinder

2. Angular speed of rotation of the cylinder around its own axis o, #0.
Before that, it was shown that o, =0a particle can "stick" at a certain angular

velocity w . For example, for k = 2; r = 0.25; f = 0.3 and w= 6.7, the relative velocity of
the particle uniformly decreased to zero (Fig. 2b), i.e., the particle "stuck". Under the same
conditions, we will provide the angular velocity  , with which the cylinder rotates around
its own axis. Even at a low speed of rotation of the cylinder (w ,= £1 rad/s ), the particle
no longer sticks. Its movement stabilizes over time and the relative speed becomes

constant.
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Fig. 3. Modes of particle motion at @, #0; k=2;r=0.25; f=0.3:

a — graphs of changes in the relative velocity of the particle at positive values of o
(the value is indicated by a number);
b — graphs of changes in the relative velocity of the particle at negative values of  ,
(the direction of rotation of the cylinder in the transfer and relative movements is
opposite);
Cc — trajectories of movement on the sweep of the cylinder at @ ,= £2 rad/s

w, increases, the relative velocity of the particle also increases. At the same time, and for
the same directions of angular velocities w and w , (Fig. 3a) and for the opposite ones (Fig.
3b), the relative speed of movement becomes constant over time. For example, for w =
+2 rad/s, it is approximately equal to 2.25 m/ c¢. Numerical integration of equations (18)
showed that after the stabilization of the motion (when the relative velocity of the particle
becomes constant), the component of the velocity down the generator and the component
of sliding perpendicular to the generator are also constant. This means that the particle is
in two uniform motions (rotational and translational), so it moves along a helical line. In
fig. 3, c shows the trajectories of the movement of the particle on the sweep of the cylinder
for w ,= 2 rad/s and o , = -2 rad/s . Helical lines, which turn into straight lines on the
scan, form angles f with the vertical generator of the steel cylinder.

Knowing that after the stabilization of the particle motion, the functions a=a(s) and u
= u (s) are linear, one can find an analytical solution to the system of differential equations

(18). Without resorting to derivation, we present the finished result:
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2
a:ﬂks+go; u:_wgrgk :

® @®° COSQ

k22 2Y 4 p242)_ , 4f2p2.2 (20)
e o —arcsin K1 +\/(1+f2Xa) g J-ot 2P
0] (1+f )
For example, for values k =2; r = 0.25; f = 0.3; w = 6.7; w ,= 2 we obtain:

a =0,597s + 1,47, u=-0,648s. (21)

Equations (21) describe the movement of a particle with given structural and

Kinematic parameters after stabilization of the movement with a constant relative speed.
Knowing the derivatives of dependences (21), «'=0,597 i u’=-0,648 we can find the exact

value of the relative velocity of the particle according to formula (19): v,=2.23m/s. You
can also find the angle § at which the particles cross the rectilinear generators of the
cylinder:  g=arctg(ra’/u’)=13°. Since «'iu'they are determined by differentiating
expressions (20) with respect to the variable s, it is possible to find generalized formulas
for determining the relative speed v ,and the angle  :

2
p :arctgw COS(p; (22)
ro, 2 2 2,2
v, =—" cos“ p+g“k”.
' a)COS(D\/a) o9 (23)

Since git does not depend on w ., it can be concluded that the value of the angle f
(22) does not depend on the angular velocity w ., but only on the design parameters, the
angular velocity w and the friction coefficient f . In fig. 4 shows graphs of changes in the
angle g for different angular velocities w as the friction coefficient f increases. It can be
seen from them that the angle S increases as the angular velocity w increases and the
friction coefficient f increases.

It can be seen from formula (23) that the relative velocity of the particle v . is linearly
dependent on the angular velocity @ ,with other parameters unchanged. Graphs of the
dependence of the relative velocity v , of the particle on the friction coefficient f for
different angular velocities w ,at w =6.7 rad/s are shown in Fig. 5.
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w=9

0.3 0.35 0.4 0.45 05 03 04 05

Fig. 4. Graphs of dependences of the Fig. 5. Graphs of the dependence of the
angle g onthe coefficientof frictionfat relative velocity v ,of the particle on
different angular velocities w the friction coefficient f at different

angular velocities o ,

Based on the dependences (20), it is possible to find the angle $ that characterizes the
helical line on the cylinder, and the relative speed v ,at which the particle moves along this
line forany angular velocities w ,. At the same time, for the determined angular velocity w
, given design parameters and friction coefficient f, we find the angle £ using formula (22)
. When the angular velocity o . increases, the angle g does not change, and the speed of
movement of the particle v , increases according to (23) in direct proportion to w,, i.e. the
trajectory of the movement of the particle remains the same helical line along which the
particle moves faster with an increase in the angular speed o ..

Numerical integration of equations (18) shows that the exact analytical solution (20),
formulas (22), (23) reflect the behavior of the particle only in a rather narrow range of
angular velocities @ and w . For example, when the angular velocity @ ; increases 10 5 and 6
rad/s, fluctuations in the relative velocity increase (Fig. 3a).
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Fig. 6. Graphs of changesin the relative a b

velocity v .of a particle during rotation  Fig. 7. Trajectories of the relative
of the cylinderin oppositedirections (@ motionofa particle on the sweep of a
= %10 rad/s ) at o= 6.7 rad/s cylinder at differentangular velocities
o |
a — motion trajectories; b — enlarged
fragment

With a further increase in w ,to 10 rad/s, these oscillations become such that at a
particular momentin time v ,= 0, i.e., the particle moves along the surface of the cylinder
with stops (Fig. 6). Therefore, formulas (20), (22), (23) do not work in this case, but
remain valid for o , —;, With further growth of w, the relative velocity v , of the particle
drops sharply. Figure 7a shows the trajectories traveled by the particle on the sweep of the
cylinder for the same period of time. If at @ , = 10 rad/s the particle made 9 periodic
oscillations with stops at the turning points and descended only almost 3 m, then at w ,=
11 rad/s it made much smaller oscillations and descended only 0.13 m (Fig. 7, b). If you

further increase w ,, then the particle practically "sticks".
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Fig. 8. Horizontal projections of the absolute trajectory of the particle movement at;
k=2;r=0.25;f=0.3; ®=06.7:

a—w,=-15radls; b-ow , =-21radls
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Fig. 9. Horizontal projection of particle motion at Fig. 10. The trajectory of
o = 21 rad/s and previous other parameters the particle movement on
the sweep of the cylinder at
w ,=-22 rad/s and w ,=- 23
rad/s

The situation is completely different when the rotational motions » and w , have the
opposite direction. At w =6.7 — const, formulas (20), (22), (23) remain valid when w ,

149



"Enepzemuxaiasmomamurxa', No2, 2024 p.
increases 10 -20 rad/s. At the same time, the relative speed increases to 22 m/s (Fig. 5, f = 0.3)
ata constantangle /=13°. At w ,=-21 rad/s, a phenomenon similar to resonance begins:
the speed of the particle does not stabilize and grows indefinitely, the trajectory of its
movement approaches the trajectory in the absence of friction. Studies have shown that in
this case the pressure force has a sign-changing character, that is, the particle at some
moments of time does not press against the cylinder wall, but breaks away from it, that is,
its movement becomes uncertain. Equations (18) work in this case, because it is
mathematically determined that the particle remains on the surface of the cylinder all the
time and the direction of the pressure force does not matter (in the physical model, this can
be explained by an example when the particle is between two coaxial cylinders with
infinitely close radii).

« were studied. The formulas for finding them are given in the work [4] :

1.
Xy = rcos(e + ks) + —sin(ks);
k (24)

Y, =rsin(e +ks) — %cos(ks),

where the value of the angle ¢ is described by expression (5). If we take a =0 in
expression (5), then equation (24) will describe the horizontal projection of the absolute
trajectory of a particle that does not move along the cylinder ("stuck™). It turned out that a
particle in the frequency range w,, when it is possible to stabilize its motion with the
achievement of a constant relative speed v ,, moves along a cylindrical surface with the
maximum possible radius R + r (Fig. 8a, the trajectory is depicted by a solid line). The
dashed line shows the trajectory of a point fixed firmly on the cylinder wall. At w ,=- 21
rad/s, the horizontal projection of the absolute trajectory of the particle’s motion
significantly changes its shape in some places, approaching a straight line. (Fig. 8, b).

Of course, in this case, the centrifugal force, and therefore the pressure force, will be
minimal. When the angular velocity increases to the value w , = -22 rad/s, the pressure
increases and the particle begins to move with stops. The horizontal projection of the
absolute trajectory of the particle is shown in Fig. 9 (solid line), and the trajectory on the
sweep of the cylinder is shown in Fig. 10 (curve with a larger amplitude and oscillation
period). With a further increase in w , the amplitude and period of oscillations of the
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trajectory on the sweep decrease, and the horizontal projection of the absolute trajectory
approaches the trajectory of a fixed point on the surface of the cylinder. This means that a
further increase in the angular velocity w , leads to "sticking" of the particle. Therefore,
upon reaching a certain value of the angular velocity w , at a constant angular velocity w, a
sharp decrease in the relative veloCity V r of te particle movement P€QINS. It begins to slide along
the cylinder with stops and is prone to "sticking”, and this happens faster when the angular
velocities w and w, have the same direction and somewhat later when they are directed in
opposite directions.

Conclusionsand perspectives. The movement of a material particle along the inside
of a vertical cylinder, the axis of which rotates around a fixed vertical line with an angular
velocity w, was studied for two cases: 1) the angular velocity of rotation w , of the cylinder
around its own axis is zero; 2) the angular velocity w , of the rotation of the cylinder
around its own axis is not equal to zero.

In the first case, it is found that the particle on the surface of the cylinder occupies the
position at which it is the most distant from the axis of rotation of the cylinder around a
vertical line, i.e. at a distance R + r and further it moves down the plane of the cylinder
uniformly accelerated, uniformly or uniformly decelerated up to "sticking" depending on
the value of the angular velocity w.

In the second case, when w , # 0, the particle behaves similarly: it remains at the
maximum distance R + r after the motion is stabilized. At the same time, it slides along
the surface of the cylinder with a constant relative speed v , along a helical line. The
direction of the rise of the helical line changes to the opposite when the direction of the
angular velocity @  changes: SUCh movement is possible in a certain range of angular
velocities w and w,. As the angular velocity w , increases, the moment comes when the
particle cannot maintain the described state of sliding, it begins to move along the surface
of the cylinder with stops and is prone to "sticking”. This state occurs sooner when the
angular velocities w and o , have the same direction, and later when they are directed in
opposite directions.
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JOCJIJI)KEHHS PYXY MATEPIAJIBHOI YACTUHKH IO BHYTPINIHINI
MOBEPXHI BEPTUKAJIBHOT O ITUWJITHIPA, SIKUH 3IMCHIOE
MJIAHETAPHUH PYX

C. @. Ilununaxka, A. B. Hecgioomin

AHoTauis. /7i0 nnanemapuum pyxom yuninopa po3ymitoms Maxkuii tio2o pyx, KOJIu iH
00HOYACHO nepehy8ac 8 080X 00EPMANbHUX pPYXax: 00epmacmvcsi HABKONO BIACHOIL
B8EPMUKANBLHOI OCI 13 NOCMIUHON KYMOB0OI WEUOKICMIO, I cama 6icb YUNiHOpa
0bepmaemucsi i3 NOCMIUHOI KYIMOB0I0 WEUOKICIIO @ HABKONO 8ePMUKAIbHOI HEPYXOMOi
oci. Pyx uacmumnku 6yode cknadnuii i cxiaoamumemuvcs i3 6IOHOCH020 il pyxy no
BHYMPIWHIL NOBEPXHI YUNIHOPA | NEPeHOCHO20 pPYXy camo2o yuiinopa. Taka cxema
npusoody 3acmoco8yEMbCs 8 YUIIHOPUYHUX peulemax Oas COPMYBAHHS HACIHHS
CLIbCbKO20CNOOAPCHKUX KYTbMYP.

3a0aui Ha CKIAQOHUL pPYX YACMUHKU MOXMCHA YCHIUWHO pPO38 A3y8amu i3
3acmocysanuam mpueparuuka i popmyn Opene.

Mema Oocnidxcenns - 6cmaHo8umu CKIAOHUU pyX MamepianbHOi 4acmMuHKu no
BHYMPIWHIL NOBEPXHI YUTIHOPULHO20 peutema 3a 00NOMO2010 MPUSPAHHUKA T hopmyn
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@Dpene npu 00HAKOBUX | PIZHUX 3A HANPAMOM KYMOBUX UWLBUOKOCMAX NEPEeHOCHO20 I
8IOHOCHO20 0bepmants peuiema.

XapakmepHnoro eracmugicmio 3acmocy8anHs mpuepaniuka i oopmyn Opene € me,
W0 HE3AIeIHCHOIO0 3MIHHOIO 8 HUX CTLYICUMb He Yac t, 5K ye 3a2aibHONPUUHAMO 6 3a0a4ax
KIHeMAmMuKU [ OUHAMIKU MOYKU, A O0BHCUHA OY2U S HANPSAMHOIL KPUBOIL (8 HAULOM)Y 8UNAOK)
— xoaa paodiyca R), momy 6y6 6CmaHos1eHUli 83A4EMO38 S30K MIHC 00epmMAaTbHUMU PYXAMU
yepes yeu napamemp.

Cucmemy ougepeHyianrbHux piHAHb NPOIHMESPOBAHO YUCETbHUMU MemoOaMu.
3Haui0eHo MOYHUU AHALIMUYHUL PO36 30K V BUNAOKY, KOIU PYX UACMUHKU
cmabinizyemvcs i il weuoKicmos cmae nocmitinoio. 3pobieHo 8i3yani3ayilo 00epIHCanux
pe3yibmamis.

Bcmanoesneno desxi 3akoHoMIpHOCMI 8i OHOCHO20 MA AOCONIOMHO20 PYX)Y YACHUHKU Y
YUNTHOPUYHOMY peuiemi, KOJIU KYmo8a uleUOKICb 00epmanHs YuiiHopa HABKOJIO 8lACHOI
oci 00OPIBHIOE HYIIO [ He OOPIBHIOE HYIIO.

Y nepwiomy eunaoxy 3’sicoeamo, wo uacmumka HA NOBEPXHI YUNIHOpA 3AUMAE
NOJIOJCEHHS, 34 SIKO20 B0HA MAKCUMANILHO BI00ANeHa 8i0 0Ci 0bepmaHHs YuliHopa
HABKOIO0 8EPMUKANbHOI NpsAMOL | 0ali 80HA PYXAEMbCA 6HU3 NO MBIPHIU YUNIHOPA
PIBHONPUCKOPEHO, PIBHOMIPDHO abOO0 JiC DPIBHOCNOBIILHEHO ax)c 00 ,,3alunavusi’” 6
3aneHCHOCmI 810 8eIUYUHU KYIMOBOL WEBUOKOCHI.

Y opyeomy sunaoxy vacmunka nogooums cebe aHaANO2IYHO: 60HA 3ATUULAEMBCS HA
MAKCUManvHo 8iooaneHiu giocmani nicia cmaoinizayii pyxy. Ipu ybomy ona kos3zae no
NOBEPXHI YUNIHOPA i3 NOCMIUHOW 8IOHOCHOIO WEUOKICMIO No 28UHMOGI Ninii. Hanpsam
niOUOMY 28UHMOBOI NIHII MIHAEMbCA HA NPOMULEHCHUL NPU 3MIHI HANPAMY KYMOB0i
weuoxkocmi yuninopa. Taxuii pyx mosrcausull 6 neHOMy 0ianasoHi Kymoeux ueuokocmer
yacmuuku i yuninopa. Ilpu 3pocmanHi Kymoegoi wieuokocmi 4acmuHKU HACMYNAe
MOMEHM, KOJIU BOHA He MOXce 30epieamu ONUCAHULL CMAH KOB3AHHSL I NOYUHAE PYXAMUCS
1O NOGEPXHI YUNTHOPA I3 3YNUHKAMU I CXUAbHA 00 ,,3arunanns’. Takuii cman nacmynae
weuouie, Koau Kymoei ueUOKoCmi 4aCmuHKy ma YuiiHopa Maromes 0OHAKOBUL HANPAM, |
ni3Hiwe, KOJIu 60HU CRPAMOBAHL 8 NPOMUIEHCHI CIMOPOHU.

KawuoBi ciaoBa: cynpoeionuit mpuzpannux @Dpene, yuiinopuune peuiemo,
M PAaEKm opia pyxy 4acmuHKu, WeUuOKiCmo pyxy YUIIHOPA, WEUOKICH b PYXY YACH UHKU
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