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Abstract. The purpose of the research was to develop a computer model of
motion of a particle on a rough vertical plane in the environment of the symbolic
algebra Maple and with the help of computational experiments to find out its
properties.

Trajectory-kinematic characteristics of motion of particles along a rough vertical
plane are established. The particle trajectories and graphs of its velocity are shown,
depending on the position and different coefficients of friction and initial velocity.

On the basis of the performed research it can be concluded that the motion of a
particle in the vertical plane occurs in the same way as in the motion of a particle
under the influence of the force of gravity in space.

Key words: motion of a particle, vertical plane, system of differential
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Topicality. In many agricultural processes, the movement of particles of material
on rough planes takes place. Understanding the patterns of motion of a particle (as a
material point) on a rough plane of arbitrary position in a three-dimensional space
allows purposefully to calculate the structural and kinematic parameters of the working
bodies.

Analysis of recent research and publications. An analytical formation of the
law of motion of a particle on any rough surface reduces to the compilation of a
system of differential equations of the second order, the solution of which is the
particle trajectory, its velocity, acceleration, the length of the traversed path, the
strength of the normal reaction, the time to its stop, and others trajectory-kinematic
characteristics. The sequence of analytic transformations in the derivation of the
system of differential equations and the methods of its solution is quite labor-intensive.

During the last decades (in the period of the emergence and development of computer
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technologies), significant changes in the automation of the methods for deriving the
laws of motion of a particle on a rough surface of complex form did not occur. In
existing studies, each scientist individually performs analytical transformations in
order to obtain the law of motion of a particle in the form of systems of differential
equations of the second order, the complexity of which essentially depends on the
shape of the surface. That is why the list of surfaces on which the motion of the
particle was investigated is limited to a plane, a cylinder and a cone of rotation, a
screw conoid, an expanding helicoid [1].

Computer simulation of the motion of a particle on rough surfaces allows to
discard bulky analytical transformations and provide the scientist with a convenient
dialogue mode for carrying out the necessary computational experiments on particle
motion analysis under different initial conditions of its throw on any rough surface that
is in a certain way located in space [2, 3].

The purpose of the study is to develop, in the environment of the symbolic
algebra Maple, a computer model of motion of a particle along a rough vertical plane,
and with using computational experiments find out its trajectory-kinematic properties.

Materials and methods of research. In the maple model PlaneOxzR_u the
formation of the particle motion law in the vertical plane R(w,v) is carried out in the
function of the independent parameter u - its position on the u-coordinate direct plane.
To derive this law, we substitute the dependencies u = u and v = v (u) of the particle
trajectory in the internal u, v coordinates of the vertical plane, from which we obtain
its trajectory r(u) in the system of cartesian coordinates Oxyz in the form:

. riuw) = rlw 0, v(w)], (1)
where v(u) is the desired trajectory in the internal u, v coordinates of the planeR(u, v).
According to the obtained equation r(u), we define:

vector of tangent vector r{u) of the trajectory r(u) and velocity V{u):

o T(u) = r[l, D,iv['uj], (2)
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acceleration vector w(z) and its value W (t):

d

o wlu) = it(ﬂj =w [ID, 0, — viw)|, 4)
du dr*
a2
° Wiw) = lwlw)| = Evl:u]; (%)
the vector of the normal n trajectory r{u) and its curvature k(u):
, r & & N
o npy=mnj vy w0 . :'_:;;1; (6)
. k(u) =—="—15; (7)
|:_1+|::%y-:_'uj )

the centrifugal force E and the force of the normal reaction F,, of the particle:

* E(u) = m V(u)? k(u) = —2——7¢{ (8)
° F\ I:H] =mg cos [Ej + Fc cos |:;|r;|:| =0, (9)

where cos (£) 1s the cosine of the angle € between the vectors N{u) and n{u):

. Ce(u) = cos (£) = cos(n,N) = 0. (10)
To form the motion law of a particle in projections on the orths ¢ 1 v triedron

OuvN we define the cosines of the angles between the vectors w(w) and z(t) and the

vectors Ry, 1 Ry

o cwu(u) = cos(w, R,) =0, (11)

. Ccwrlu) = cos(w,R,) = 1, (12)

. Cru(u) = cos(TR,) = ——, (13)
J i+ I%L ) I )

o Crilv) = cos (TR = — (14)

Their substitution into the system of differential equations leads to its following

form:

G'u:=n 0=20
* {Dv: =m ;T;v[u] =—mg (15)
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The zero equality of the left-hand side of the resulting differential equation means
that the velocity of the particle along the 0u = Ox axis is a constant value and is equal
to V, sin( e, ), and therefore the value of the traversed path s(w) is equal to:

. s(w) = 1V, sin(ay) + o, (16)

where: u 1s equal to:

. w= 2t (17)

Use dsolve as:

_ { > . 4 % , [
. dsolve ("{:?" e vlu) = —mg, D(eWD) = ¥, cosla,) w100 = vy, viw) ], (18)
leads to its solution:
1,
. viu) = —-gu” +V, ucos(e,) + v, (19)

and replacing s(u) = u we have:

. o LA.:L.: _ : 'ﬁ ;’n;«.i,_.' f-b ] _i SaPEte -:‘ ' .n'« w.,' iowr (20)

g
£ Er

Substitution of the obtained dependence v(u) to the equation of the trajectory r(u)

of the particle is brought to its next parametric form:

° 'f"“u':’ = I.'C i f._.'_- -f-r - ol fed {n-m) e . (21)

* mimlg, e,

A similar result will also be obtained with the application of the OTPN trihedrone
bar of the formation of the particle motion law in the function of the independent

parameter u, although the analytical calculations will be somewhat different. First we
find:

vector P = N x 2 trthedrone Darboux OTPN:

. P(w) = P [-=vw),0,1]; 22)
cosines of the angles @ and w between the vector G[0, 0, —1] gravity and the vectors 1

and P:

w5

Tl = cosle) = cos(l 1) = — —ile—— (23)
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. Cle) = cos(p? = conl 6. P) = — —ee; (24)
. . : . , d :
the differential of the arc ds of the trajectory r provided dv = —v (w) du
f '_-s‘ ..: .,
o ds = vau' +dvs = JL 4| Cwln) | o (25)
. &
normal k,, and geodesic k, curvature of the trajectory r(u):
o k,(w) = kcos () =0; (26)
. i () = ksin () = —=2° W =3 (27)

Since the trajectory r(u) of the particle lies in the vertical plane R(u,v), its

normal curvature k, (1) equals zero, and the curve k(u) coincides with its tangential

curvature k, (1),

We obtain:

f 4 g %
oo e R <5 . D IR ]
01 ) - Vil g l*d‘u L)
* s i : (28)
} (e g e = g
\ Tz

Note that the desired dependencies, in contrast to the previous systems of
differential equations of the particle motion law, are the velocity V(u) of the particle
and the v(wu)- coordinate of its vertical position for the variable parameter u. The initial
conditions for finding them are:

. OF: = i_f'{vt‘zA_.' = ctgla,), vin,. = W, (29)

'il
The use of the operator Fzalvzi 0T 0P 070 ¥w) vl allows us to obtain

explicit dependences of the velocity V{u} of the particle and the coordinate v(u) of its

position in the function of the variable parameter u:

. ¥ TETE T R
° Viu) =V, sinle,) /1 4| B cfglag )y, (30)
R ! W, " RO ok, 4
Y Ik E B — f “j;;“:“r:jﬂlﬂgiﬂiﬂﬂﬂ:j:< ,} L i :‘;ﬁ_ f-T::‘( l-.:.“': -! na‘-'. (3 1)
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Pesynbrati mocnimkeHHs Ta ix obroBopeHHs. In figure the trajectories of the
motion of the particle r(u), their curvature k(u) and the velocity /(u) are constructed,
depending on the angle of the throw o, = 15° 45%, 90%,120° at the initial velocity
7, = 4m/s. Note that the value of the independent parameter u lies within [u,, 1, ],
where: the parameter u, determines the - coordinate line on which the particle is
located at the time of its throw. Therefore, the graphs of the velocities V{u} of the
particle and the curves k{u) of the trajectory r(u) are displaced along the axis Ou y the
valug 1 ég§gure,b,c). It is clear that the velocity V(u) of a particle thrown at an angle
¢, within the limits 10;90°] will first fall to a certain valu&v_, 128 its highest point,

and then increase with u — oo. o — 15¢
o

o, =90°

=]

I
=
(]
]

(-1
L]

o
=]

1L
H
LA
F e
™
>

b

64 ol i B

N
™

a) b) c)
Figure. Trajectories r(u) curves of k(u) and velocity V(u) depending on the angle

o, of throwing in the function of the independent parameter

Conclusions and perspectives. On the basis of the performed research it can be
concluded that the motion of a particle in the vertical plane occurs in the same way as

in the motion of a particle under the influence of the force of gravity in space.

List of references
1. Nesvidomin V.M. Maple-models of movement of particle on rough fixed
surfaces of 2nd order: monograph / Nesvidomin V.M., Pylypaka S.F., Babka V.M.,
Nesvidomin A.V. - K.: CB "KOMPRYNT", 2016. - 176 p.

96



"Enepcemuka i agmomamuxa', Nel, 2018 p.

2. Nesvidomin A.V. Particle movement by the horizontal plane which makes
vibrational displacements in space / A.V. Nesvidomin // Exeprerrka i aBromarnka. — 2017.
-Ne 3. - P.101-110.

3. Nesvidomin A.V. Simulation of particle motion in still a rough surface
and its testing for example inclined plane / A.V. Nesvidomin // Euepreruxa i
aBTroMaruka. —2017. - Ne 2. — P. 23-32.

References

1. Nesvidomin, V.M., Pylypaka, S.F., Babka, V.M., Nesvidomin, A.V. (2016).
Maple-models of movement of particle on rough fixed surfaces of 2nd order:
monograph. Kyiv: CB "KOMPRYNT", 176.

2. Nesvidomin, A.V. (2017). Particle movement by the horizontal plane which
makes vibrational displacements in space. Enerhetyka i avtomatyka, 3, 101-110.

3. Nesvidomin, A.V. (2017). Simulation of particle motion in still a rough
surface and its testing for example inclined plane. Enerhetyka i avtomatyka, 2, 23-32.

MOJEJIOBAHHS PYXY YACTHUHKH IO BEPTUKAJILHIN
IIOIIUHI Y ®YHKIII I MOJTOKEHHSA
A. B. Hecgioomin

AHoTanigs. Memorw OocniodicenHss 6yia po3poobKa KoMn 10mepHoi MoOei pyxy
YACMUHKYU NO WOPCMKIU 6ePMUKANIbHIN NAOWUHI 8 cepedo8UWi CUMBOIbHOI aneebpu
Maple ma 3a Oonomozoro 004UUCTIOBANILHUX eKCNEPUMEHMIB 3 'ACO8Y8AHHS il
e1acmugocmel.

Bcmanoeneno mpaekmopho-Kinemamuyni Xapakmepucmuxuy pyxy 4acmuHox no
wopcmkiu sepmukanvrit niowuni. Hasedeno mpaekmopii wacmunku ma epaghixu ii
UWBUOKOCMI 3AeHCHO 810 NOJIONCEHHS MA PI3HUX KoepiyicHmie mepms i no4amKo8oi
WBUOKOCL.

Ha ocnosi npogedenux Oocniodcenb MOMNCHA 3pOOUMU BUCHOBOK, WO pPYX
YACMUHKU Y 6EePMUKATbHIL NIOWUHI 8I00)Y8AEMbCS MAK CAMO 5K Ni0 4ac pyxy
YyacmMuHKY nio OI€H0 CUTU 3eMHO20 MAJICIHHA Y NPOCIOPI.

Kurw4oBi ciaoBa: pyx uacmunku, 6epmukaibHa NAOWUHA, CUCHIEMA
oughepenuianvuux pieHAHb, MPACKMOPIA, WIEUOKICHb, NOJI0NHCEHHA

MOAEJIUPOBAHUE IBUKEHUSA YACTHULHBI 11O BEPTUKAJILHOU
INJIOCKOCTH B ®YHKIIUU EE ITOJIO)KEHUSA
A. B. Hecéeuoomun

AHHOTaNMsA. [Jenvio uccredosanusn o6vi1a pazpabomrKa KOMIbIOMEPHOU MOOeau
OBUDICEHUSL  4acmUuybl NO  WEPOXOBAMOL  8ePMUKALLHOU NJIOCKOCMU 68 cpede
CUMBONILHOU  aneebpvl Maple u ¢ nomMowwlo GbIYUCIUMENLHBIX IKCNEPUMEHTNO8
BbIICHEHUE ee C8OUCMS.
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Yemanoenenvr  mpaekmopho-kunemamuueckue XapakmepucmuKku  O8UNCEeHUs.
yacmuy no wepoxoeamou eepmuKaivHol niockocmu. IIpueedenvt mpaexmopuu
yacmuybl U 2papuku ee CKOpOCmu 8 3A8UCUMOCINU OM NOJONCEHUS U PA3TUUHBIX
KOd(Puyuenmos mpenusi u Ha4aibHOU CKOPOCMIL.

Ha ocnose nposedennvix uccnedosanuti MOJNCHO cOeiamsv 8bl80O, YMO
OBUDICEHUE YACMUYbL 8 BEPMUKAILHOU NIOCKOCMU NPOUCXOOUm MAK Jice, KaK U 60
8peMsi  OBUIICEHUsL HACMuybl NOO0 OelUCmeUueM CUlbl 3eMHO20 NPUMSNCEHUSL 8
npocmpancmae.

KaroueBble cjoBa: oOsudicenue uacmuyvl, GePMUKAIbHAA HNIAOCKOCHLDb,
cucmema oughhepenuuanb HbIX ypasHeHUuIl, MPAeKmopus, CKOPOCHLb, NOJI0MHCEHUE

98



