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Abstract. In many technological processes of agricultural production there is a
movement of particles of material on an inclined plane. Determination of the laws of
motion of a particle on the plane of an arbitrary position in three-dimensional space
allows to perform the calculation of structural-kinematic parameters of the working
bodies.

Computer simulation of particle motion allows to replace cumbersome analytical
transformations and provide a dialog mode for carrying out the necessary computational
experiments to analyze the motion of a particle under different initial conditions of its
throwing on any rough surface, which is in a certain way located in space.

The purpose of the study is to develop a Maple-model of the motion of a particle on
an inclined plane as a function of its motion parameter.

The use of the the Darboux trihedron allowed to reduce the law of motion of a
particle to a system of two differential equations to determine the velocity and curvature of
the particle trajectory.

The law of motion of a particle along a rough inclined plane was obtained in the
function of it's motion on a plane in projections to the T and P orts of the Darboux
trihedron OTPN.

The trajectories (1) and velocity graphs V(u) of a particle along an inclined plane

with a different angle of inclination from the vertical position for different throwing angle,
initial velocity and coefficient of friction were obtained. The particle motion under
appropriate initial conditions is analyzed.

Simulation of the motion of a particle on a rough surface in the function of its motion
allows to study its trajectory-kinematic properties on a given area of the surface.

The choice of the accompanying trihedron of trajectory OuvN or OTPN does not

affect the obtained results of the trajectory-kinematic properties of the motion of the
particle, although it is indicated in the sequence of derivation of its law of motion.

Key words: accompanying trihedron, material point, inclined plane, trajectory of
motion
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Topicality. In many technological processes of agricultural production there is a
movement of particles of material on rough work surfaces in the form of an inclined plane.
Establishing patterns of motion of a particle (as a material point) on the rough surface of
an arbitrary position in three-dimensional space allows to calculate the structural-
kinematic parameters of the working bodies.

Analysis of recent research and publications. Analytical derivation of the law of
motion of a particle on any rough surface is reduced to the compilation of a system of
differential equations of the 2nd order, whose required dependencies are the trajectory of
the particle, its velocity, acceleration, the length of the traveled path, the force of the
normal reaction, the time of motion to its stop and other trajectory - kinematic
characteristics. The sequence of analytical transformations in the derivation of the
differential equation system and the methods for solving it are quite labour intensive. In
recent decades, no significant changes in the automation of methods for deriving the laws
of motion of a particle on a rough surface of complex shape have occurred. In existing
studies, each scientist individually performs analytical transformations in order to obtain
the law of motion of a particle in the form of systems of 2nd order differential equations,
the complexity of which depends essentially on the shape of the surface.

Computer simulation of particle motion on rough surfaces allows to reject
cumbersome analytical transformations and to provide the scientist with convenient dialog
mode for carrying out necessary computational experiments on analysis of particle motion
under different initial conditions of throwing it on any rough surface, which is in a certain
way located in space [2 ]. However, the development of computer models of particle
motion on the surface requires the development of a general algorithm for the automatic
derivation of the system of differential equations of the law of motion of the particle on
any surface arbitrarily located in space; analysis of trajectory-kinematic characteristics of
particle motion not only in time, but also the position of the particle and the direction of its
movement on the surface; implementation of approximate methods of solving systems of
differential equations to refine the results of research in the form of numerical data,

graphical images and simulation models of reproduction of particle motion on the surface.
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The purpose of the study — is to develop a Maple-model of movement of particle on
an included plane in the function of parameter of movement.

Materials and methods of research. The parametric equation of the uv- coordinate

grid R(u,v) of the inclined plane in the Oxyz coordinate system can be represented as [3]:
R(u,v) = Rlu, —v sin(d) ,v cos()], (1)

where: u € [u,;u,], v € [v,;v,] - independent internal coordinates of the plane; ¢ - the

angle of rotation of the vertical plane around the axis Ox.
If we substitute the expressions u =u,v = f:—; ctg(edw)) du, into the inclined

plane equation (1), then its trajectory r(e{w)) in the Cartesian coordinate system Oxyz

will look like this:
r(a(w) = rlu,—([ ctg(a(w)) du) - sin(2), ([ ctg(aw)) du) - cos(D ]. (2)
By equations (1) and (2) we define::
— the vector of the tangent #{ e{u) ) trajectory r(edw) ):

— . cos(clw)) sin(d) cos(efw)) cos(H |
1{"-2[:“)) = f[lr sin(afw)) 7 sin(efu)) J (3)

— the vector of the normal n(e{w)) trajectory r(edw) ):
d Q;{ :] d F | F i F
—alu cos{a{u]} aa{u] sin(g) dua{u] cosl s )

H(Q(H)) -n [ sm{a{u]}a ’ sin{a{u]}z o Siﬂ{a’iuj}z ’ @

— vector P(a(w)) = N x 1 of the Darboux trihedron OTPN:

P(odw) = P [_ Z?;Effﬂ* _sin(d), cas(f:)]; (5)

— cosines of angles ¢ and v between vector G[0, 0, —1] and vectors z and P:
Colelu)) = cos(@) = cos(G 1) = —cos(a(w)) cos(d), (6)

cyle(u)) = cos(w) = cos(G.P) = — sin(a(u)) cos(d); (7)
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— the cosine and sine of the angle ¢ between the normal N of the surface and the

normal n of the trajectory r:

E‘gl:a[u)) = cos(&) = cos [H} =0, (8)

Se(ew)) = sin(6) = sqrt(1— Ce-Cs) = 1. (9)
We obtain the obtained expressions into the system of differential equations [3]
{DT =mW, =F cns({??r) — fl:Fg cﬂs(GTN) + Fr cns[:nTN:l)

OP:= m W, sin(n,N) = F, cos(G,P) ’ (10)

where we obtain the law of motion of a particle on a rough inclined plane in

projections on the T and P of the Darboux trihedron OTPN in the form (Fig. 1,a):

{DT = mV(a) 1-V(a) k(a) = ~mg cos(a) cos(2) — f mg sin(2) 11)

0P = mV(a)? k(a) =mg sin(a) cos(d

The required parameters of the system of equations (11) are velocity V(e) and
curvature k(o). We find them using the dsolve operator
dsolve({OT, 0P,V (e,) =V, },{V(a), k()}). Then we obtain such explicit equations of the
velocity of the particle V(&) and the curvature k(e) of its trajectory:

—f tani#

_ Vg sin{ag) (cosec(a)—ctgla))
V[‘Ij "~ sin(a) (cosec(og)—ctglag))~f tantd (12)
k() = 8.5n@)* (Ccosectag)—cta(ae)) T 1(6)" (13)

VE sin(ap)? ((cosec(d)—ctg(a))~f tanidyz’

For an absolutely smooth (f = 0) inclined plane, the equation of the velocity of the

particle V() and the curvature k(o) of its trajectory will have the following form:

vie) = % (14)
k[ar) _4g sinia)® cas{d}l (15)

VE sinle,)®

117



"Enepzemuka i agmomamuxa', N3, 2019 p.
Note that for a perfectly smooth inclined plane at & —» © V() — « and k() — 0 - the

velocity of the particle moving along the formation of the largest slope of the plane will
increase indefinitely.

To construct the trajectory of a particle in the inner wu, v- coordinates of the inclined

plane r(u,+) must be solved by the system of differential equations:

iu(a) _ zinla)

dor Rl o) !
ilﬁ'ltﬂ.’} __ cos{a) (16)
dar - kie) '

which for a perfectly smooth and rough inclined plane will be respectively:

d V2 sinle,)?
—ula) =—"—7"—,
doe g sinle)* cos(£) (17)
d V2 sin(e,)? cos{z)
—via) =
e

g sin(a)® cos(&

and

2 u(a) = Vg sin(ap)® ((cosec(a)-ctgla)) S tanIy2
de N g 5'1'11{4:5:]2 {{nggc{%]_ctg{%:]:]—f Ian{lﬂ}z ’
3 _ Vg sin(ap)® (( cosec(a)-ctg(a)) —f tan(dy2 o 5(q)°

dav({x) o

g 5‘?_"]‘1{42:]3 {{CGSSC{%]—CtE{%]]_f tanl::}}z

(18)

Only the differential equation system (17) can be explicitly solved. Then we obtain

the internal u, v-coordinates of the particle's trajectory from the angle :

VE sin(ay) (cos(ay) sin(a)—sin(ay) cos(a))
u(o:] == g cosE) sini) + o, (19)
- s z
U(CZ.’) _ Ve (sin{x)*—sin(og) ]+ v (20)

2 g cos(F) sin(a)? o

Substituting them into equation (1) of the inclined plane R(w,v) leads to the
parametric equation of the trajectory r(e) of the particle on an absolutely smooth surface
in the Cartesian Oxyz y coordinate system as a function of the independent parameter o -

the direction of motion of the particle:
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rv2 sin{o,) (cos(e,) sinle)—sin{a,) cos{a))

g cos( &) sinia) o

2 il B 12y
() =r| — (Vo (sin(a)"—siniag) 4y, a,) sin(f), . (21)

2 g cos( &) sina)?

VE (sin(a)?—sin{e;)%)
(ﬂ —— '—|—vﬂ) cos(£)
2 g cos( & sin(a) -

Results of the studies and their discussion. In Fig. 1b shows the trajectories r( ) of
the particle depending on the initial angle o, = 10°; 30° 60°; 85° its throw at initial
values V, =4 m/s, £=60° u, =v, =0 over the interval of the independent variable
a € [e,; T — a,]. The trajectories of the r(e) particle along a perfectly smooth inclined

plane are paraboles, and therefore the graphs of their curvature k(e) will be symmetric

curves with respect to the ordinate e = m/2,

N\

10°

(=)

™=

I

a T
i
o

Fig. 1. Formation of the law of motion of a particle on an inclined plane:
a — in projections on the orths of the Darboux trihedron; 6, B — the trajectories of the
particle along an absolutely smooth inclined plane and their curvatures for different
angles a,

For the rough (f # 0 inclined plane R(u,v) it is no longer possible to explicitly solve

the differential equation system (18), and therefore the approximate methods must be used

to construct the trajectory (o) of the particle. At the same time, the velocity V() and the
curvature k() of the trajectories r(e) of the particle on the rough surface are explicitly

defined (14)-(15). In Fig. 2 graphs of the velocity V(e) of the particle at different angles £
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of the plane slope and the initial velocity V, of the particle at constant values of the friction
coefficient f = 0.3 of the particle and the angle «, = 60° of its throw are plotted. From
the velocity graph V(&) we can see (Fig. 2a) that at an initial velocity V,=4 m/c the particle
slowly stops in the vicinity of o = 2.8, if the angle of inclination of the plane is equal to
&= 85", For the value of the angle £= 75 about the slope of the plane, the particle will
sooner stop when it enters the “straight™ trajectory e — 1. For an angle &= 70° about the
slope of the plane, the particle will never stop at any initial velocity ¥, - it will first slow

its velocity to a certain value, but then pick it up by going to the "straight” line of the

plane. The nature of the velocity change V() of the particle will be different depending
on the value of its initial velocity V, (Fig. 2b). In particular, for an inclined plane £=70° a
particle with an initial velocity V, =8 m/c decreases its velocity to a value of
Vouin ® 3 M/c, and then gains it more infinitely in the vicinity of «— m compared to
particle, the initial velocity which was V, = 2 m/c. Graphs of the velocity V() of the
particle to its complete stop (the angle of inclination of the plane £ = 75°) re shown in Fig.
2, the higher the initial velocity V, of the particle, the faster it stops in the vicinity of
o —= T,

In general, the particle will always stop if tan(m/2 — £) < f. For example, for the
angle £=75° about the slope of the plane from the vertical position we have
tan(z/2 — &) = 0.26<f = 0.3. Thus, for any value of the friction coefficient f there is a

limit value of the angle £ of the plane slope that divides the beam of planes from the Ox

into sectors in which the particle will stop or not. In particular, for the friction coefficient

f = 0.3 the boundary angle ¢ of the plane's slope from its vertical position will be equal to
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90° — arctg(f) ~ 73.4° To find the velocity of a particle at the time of its exit on the
"straight™ trajectory, it is necessary to substitute the angle « = = . to equation (14). But in
this case we get a 0/0 uncertainty. Applying the boundary (operator limit [2]) to
expressions (14) and (15), provided that the angle £ of the plane slope is equal to the

coefficient f of friction (f tan(£) = 1), results in the following values:

. v
v, = limit(V(a), a= 1) = ?a (1 — cos(a,)), (22)
k. = limit(k(a),a= ) = 0. (23)
4 ; +H 8
£+ 7091 sk E=70° Z= 75°
3 - : » 6\
’ ' 3 * l .
T \\' " 1.4 \ “' L] \\
V2 \ " 7 N\, &L Ik VAR I
\\*"'--..._--'r 3N - - mal R I \'u a
o [ J;: [5° et ‘--'1‘ - I \':\"-h.._

: N 1“.‘:‘--..‘ 2 I“"“""‘"-----.... __,....-’ ? "---..."":'-'-'-..""‘"*
B N g I e B DN
0 —— !

15 2 25 3 15 2 25 3 15 2 25 3
* a * o * 8

Fig. 2. Graphs of velocity V(a) of a particle provided:
a —the slope of the plane &= 85°, 80°, 75° 70°, 6 — the slope of the plane £= 75° and
the initial velocity V,=2, 4, 6, 8; ¢ — the slope of the plane £= 70° and the initial velocity
,=2,4,6,8

Assertion. When the particles of the material with the initial velocity V, are fed
perpendicularly (e, = 7/2) to the line of the largest slope of the rough plane, set at an

angle of friction to the horizon, each particle after its transition to a "straight” trajectory

will move at a constant velocity ¥, /2 conditions of absence of air resistance. Bulk material
thrown along the line of greatest slope (o, = 7) of the plane will move at a constant initial

velocity V,. If you throw it in the opposite direction (e, = 0), it will stop.
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Note that for the horizontal plane (£ = m/2) it is not possible to obtain the trajectory
equation () u since its curvature k(o) is zero and the system of differential equations

(11) degenerates

For a vertical plane (&= 0) system (11) has the following form:

{GT: =mV(a) ;—EV[-:I) k(a) = —mg cos(a) (24)

0P:= mV(a)® k(a) = mg sin(a)
The result of using the operator dsolve({OT,0P,V(a,) =V,},{V(a), k(a)}) with

initial conditions V(e,) = V, is the dependence of the velocity V() of the particle and the

curvature k() of its trajectory on the variable angle e{u):

V[:a.’) _ Vﬂsj:;‘l‘l;ifo]’ (25)
o - =

According to the obtained equation of the curvature k(<) we form two differential

equations of the trajectory r(a) of the particle in the internal u, v- coordinates:

d _sinla)  Vp® sin(ap)®

dau(q] Ok g sin(a)? ' (27)
d _cos(a)  cos(a) Vo® sin(eg)®
ng(a’j ok g sin(a)? (28)

Their solution under the initial conditions u(e,) = u, and v(e,) = v, the position of

the particle at the moment « = ¢, its motion by the dsolve operator:

d V2 sin(a,)® 4 V.2 cosle) sinfe,)®
—ulag) = — — & u i
dsolve { (@) ' Mu[a’)
ule,) = u,,via,) = v,

de g sin(a)® g sin(c)® ) } Nu(a), v(a)} ' (29)

there are explicit equations u(e) and v(e) of the trajectory r(a) of the particle in the

internal u, - coordinates:
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Vo? sin(e,)® cos(a) | Vp® cos(ag) (1-cos(a,)® )+u, sin(e) g
ula) = — 30
[ ) g sinle) g sinley) ’ ( )
V.2 sin(e,)®  V.,2+2u, g9
"M o) = — .
[ ) 2g sin(c)® + 2g (31)

Substituting them into the vertical plane equation R(w,v) leads to the parametric

equation of the trajectory r( )of the particle in the Cartesian system Oxyz:

V.2 sin(e,)? cos(c)  V,° cos(e,) [l—cas[crﬂ]ghuﬂ sinla) g

g sinia) g sinfa,) '

rla) =71 0, : (32)

Vv, 2 sin(e,)®  V,2+2g1,

2g sin(a)® 2g

By equating the trajectory () of a particle in a vertical plane, it can be stated that its
construction can be carried out at the interval of the angular parameter e € [eg; [, where
ap > 0 - is its initial value. Because the trajectory () of the free motion of a particle is a

parabola, which is a symmetric curve about the vertical axis through its vertex, at the

interval o € [og:; T — o], op < m/2, the initial and the endpoints of the trajectory are in

the same horizontal plane.

In Fig. 3. shows the trajectories (&), velocity graphs V(e) and curvature k(e) at the
interval of the independent parameter e« € [og;T — o] with different initial velocity
V, =2,4,6,8M/c particles at constant angle «, = 30° of its throw. In contrast to the
graphs above, they are plotted in Fig. 3b, in the velocity graphs V(e) and curvature k()

are symmetric - the symmetry axis passes through the value of the variable parameter

o= 1/2. Itis at this point that the particle is at the highest point of the trajectory (Fig. 3a),
where the velocity V(&) of the particle is the smallest and is equal to V =V, sin(e,), and

the curvature k() of the trajectory (o) will be the largest - k = < 5= Fora particle

Vg2 sinlea,
thrown at an angle «, = m/2, ii its velocity at the beginning of the motion will be V =V,
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and its curvature will be -k = %. If the particle is thrown vertically upwards (¢, = 0),
then equation (26) of the curve k(a) = % characterizes the trajectory along a

straight line.
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Fig.2.3. Particle motion for different values of initial velocity V,:

a — the trajectori r(); 6 — velocity graph V(); ¢ — graph of curvature k()

The length S( o) of the arc of the path traveled by a particle depending on the angle &

of the direction of its movement is found by the solution of the differential equation of the
form:

d

dsolve ({—5[&.’) =2, S(a,) = EI} ,5(a) ), (33)

d o k()

we get:

(@) = 2 (-S4 con(ar) 4 stn(er)? (1n (52552) 410 (5552)) ) 30

In Fig. 4 graphs of the traveled path S(e) by a particle, its velocity V() and the
curvature k(e) of the trajectory at the interval of the parameter &€ [og;m — e,] n for
different angles of its throw «, = 10°, 30°, 60°,85° at initial velocity V, = 4 m/c. From the

constructed images, it can be seen that, regardless of the angle of throw e, the smallest

distance S( ) and with the smallest velocity V() the particle will fly in the vicinity of the
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parametere: = /2 - at the highest point of the trajectory (), where the curvature values

k() is the largest.
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Fig. 4. Particle motion depending on the angle of throw «,:
a — the length of the traveled path S(«); 6 — velocity V(a); ¢ — the curvature k() of the

trajectory r(e)

Conclusions and Perspective.

1. 1. A computer-oriented method for modeling particle motion on a rough surface
has been shown to be general and effective.

2. The use of accompanying trihedron of a particle trajectory allowed to reduce the
law of motion of a particle to a system of two differential equations, which are required
by the internal u, v - coordinates of the surface of the particle trajectory. The trajectory of
the particle r in the Cartesian coordinate system Oxyz is obtained by substituting the
found u, v - coordinates to the equation R(u,v) of the surface.

3. The use of the independent parameter « - the direction of motion of the particle on
the surface made it possible to obtain the dependences of its velocity V(e)and the
curvature k(e)of the curvature of the trajectory r(a)in an explicit form, which is not
possible for independent parameters t and .

4. The choice of an OuvN or OTPN accompanying trihedron does not affect the
obtained results of the trajectory-kinematic properties of the particle motion, although it is

indicated in the sequence of its law of motion, but the use of an @TPN trihedron is more
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natural to describe the motion of a particle on the surface as a function of an independent
parameter c.
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MAPLE-MO/IEJIb PYXY YACTUHKH IO NOXWJIIH IIJIOIUHI B ®YHKIII
IAPAMETPA Ii HEPEMIIIEHHS
A. B. Hecgioomin

AHnomauyia. Y 6acambox mMexHONOIUHUX NpoYyecax CilbCbKO2OCNOOAPCbKO2O
BUPOOHUYMEA MAE Micye PYX YACMUHOK Mamepiary no Noxunii niowuwi. Busnauenws
3AKOHOMIPHOCMEL PYXY YACMUHKU NO NIOWUHI 008LIbHO20 NOLONCEHHS 8 MPUBUMIDHOM)
npoOCmopi 00380/1€ BUKOHAMU PO3PAXYHOK KOHCMPYKMUBHO-KIHEMAMUYHUX NAPAMEMPI8
pobouux opeanis.

Komn’tomepne mooentosannsi pyxy UACMUHKU O0360J5€ 3AMIHUMU  2POMIZOKI
AHANIMUYHI nepemeopeHHs 1 3abe3neuumu OiAl0208ULl  pedtcuM OJisl NPOBEOEHHs
HeOOXIOHUX O00YUCTIOBANLHUX EeKCNEePUMEHMI8 3 AHANi3y pYXy HACMUHKU 3d PI3HUMU
BUXIOHUMU YMOBAMU T KUOAHHS NO 0Y0b-AKill WOPCMKIU NOBEPXHI, SIKA NEGHUM YUHOM
PO3MAaulo8ana 8 npocmopi.

Mema oocniodcenns — pospooka Maple-mooeni pyxy uacmunky no noxXuniti NiOWUHI
Vv @ynkyii napamempa ii nepeminjerHs.
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3acmocysannsa cynpogionozo mpucpannuxa /lapdy 003601UN0 38eCmu 3aKOH pPYXY
YACMUHKU 00 cucmemu i3 080X OupepeHyiatbHuX pieHAHb Ol BUSHAYUEHHS WUEUOKOCMI ma
KPUBU3HU MPAEKMOPIT YACMUHKU.

Ompumanuti 3aKOH PYXy YACMUHKU NO WOPCMKIU NOXUNIU NIOWUHI Y YHKYIT
nepemiwgenns it na niowuni 6 npoexkyisx na opmu T i P mpuepannuxa Jlapoy OTPN.

Ompumani mpackmopii (1) ma 2pagixu weudxocmerr V(U) vacmunku no noxunitl

NIOWUHI 3 PI3HUM KYMOM HAXUTLY il 80 8ePMUKAILHO20 NOAONHCEHHS O/ PI3H020 Kymd
KUOAQHHA, No4amkogoi weuokocmi ma Koeghiyicuma mepms. Ilpoananizoeanuti pyx
YACMUHKU 30 8IONOBIOHUX NOYAMKOBUX YMOS.

Mooenosanus pyxy uacmuHKu no WOPCMKIU noeepxwi y Gyukyii ii nepemiwyHus
00380151€ QoCiOUmMU il MPAECKMOPHO-KIHEMAMUYH] 61ACMUBOCMI HA 3A0aHill OilAHYI
NOBEpPXHI.

Bubip cynposionoco mpuepannuxa mpaekmopii OUVN yuy OTPN wue eniusae ua

00€epIHCani pe3yIbmamuy MmpacKmopHO-KIHEMAMUYHUX 6IACMUBOCMEl PYX)Y YACMUHKU,
X0ua no3Ha4aemuvcsi 8 NOCAIO08HOCHT BUBCOEHHS il 3AKOHY PYX) .

KurouoBi cioBa: cynpogionuii mpucpaHHuk, mamepiaibHa mMOYKA, HOXUIA
naOWUHA, MPAEKMOPIA PYXy

MAPLE-MOJIEJIb JIBUKEHUS YACTHUIIBI 1O HAKJIOHHOHM IJIOCKOCTH
B ®YHKIIUU ITAPAMETPA EE IEPEMEIIEHUS
A. B. Hecéuoomun

AHHOTAUMS. BO MHO2UX MEXHONO2UYECKUX NPOUECCAX CeNbCKOXO3SAUCMBEHHO20
npoU3600CMEa UMeenm MeCmo O8UNCEHUE YACMUY MAMepuald no HakIOHHOU NAOCKOCMIL.
Onpedenenue 3aKOHOMEPHOCMEN OBUNCEHUSL YACMUYbL NO NIOCKOCHMU NPOU3BOIbHO2O
PACNONOJICEHUsL 68 MPEXMEPHOM NPOCMPAHCMBE NO380JI5Iem  BbINOJHUMb  PACYem
KOHCMPYKMUBHO-KUHEMAMUYECKUX NAPaAMempo8 paboyux opeaHos.

Komnvromepnoe moodenuposanue 08udicenusi uyacmuyvl NO360J58€m 3aAMEeHUMb
2POMO30KUe aHarumuyecKkue npeoopazosanus u obdecneyums OUAIO208bLU PENCUM Ol
nposedeHUs: HeOOXOOUMbBIX BbIUUCTUMETbHBIX HKCNEPUMEHMO8 N0 AHAAU3Y OBUNCEHUS.
yacmuysbl ¢ pasiuyHbIMU UCXOOHLIMU YCIOBUAMU ee OpocaHue no adol uepoxosamol
NOBEPXHOCTU, ONPEOeeHHbIM 00PA30M PACNOTIONCEHHOU 8 NPOCMPAHCMEe.

Llenv uccneoosanus - paspabomka Maple-mooenu O6udxcenus dacmuysvl nHO
HAKJIOHHOU NIOCKOCMU 8 (DYHKYUU napamempa ee nepemeuetus.

Ilpumenenue conposooumenvrHoco mpexepanHuka Japoy nos3eonuno ceecmu 3aKOH
OBUIICEHUST HACTUYbL 8 CUCIEMY U3 08YX OUPhepeHyuanbHblX YpasHeHull 0l OnpeoeieHust
CKOPOCMU U KPUBUZHBL MPAEKMOPUU YACULDL.

Ionyuen 3axon O8udiCeHUs wacmuyvl NO ULEPOXOBAMOU HAKIOHHOU HNJIOCKOCMU 8
QyHKYUU nepemeujenusi ee Ha niocKkocmu 8 npoexyusx Ha opmul T u P mpexepannuxa
Jlap6y OTPN.

Tonyuenvr mpaexmopuu r(u) u epaguxu ckopocmeil V(u) uacmuyvl no HAKiIOHHOU
NJIOCKOCMU C PA3HbIM Y2JIOM HAKIIOHA ee OM 8ePMUKAIbHO20 NON0NCEHUsL 01 8CeX Vellos
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bpocanus, HauanebHoU ckopocmu U Kodpguyuenma mpenua. Ilpoananuzuposano
08UIICEHUE YACMUYbL NPU COOMBEEMCMBYIOUUX HAYATbHBIX YCI08UI.

Mooenuposanue 08uxiceHus yacmuybl o UEPOXo8amol NOBEPXHOCMU 68 PYHKYUU ee
nepemeujenuss no36oJsaem Uccie008amsy ee mpaekmopHO-KUHeMamuieckue ceoucmea Ha
3A0AHHOM yuacmKe nOBePXHOCMIUL.

Buvibop conposooumenvnoco mpexepannuxka mpaexmopuu OUVN wunu OTPN e
gnusiem Ha NOyYeHHble Pe3yibmamol mpaeKmopHO-KUHEMAMUYECKUX CBOLUCNE O8UNCEHUS
yacmuywvl, Xomsl CKA3bl8Aemcs 8 NOC1e008aMelIbHOCMU 86186004 €€ 3aKOHA OBUNCEHUSL.

KiroueBble ciioBa: conpoeooumenvHuvlii MpexzpaHHuK, MAmepuaibHas mouKa,
HAKIOHHAA NJI0CKOCMb, MPAEKMOPUS OBUNHCEHUS
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