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Abstract. The optimization of energy supply system becomes especially important
problem in those cases where there are several different energy sources, including, e.g.,
renewable energy sources, and several energy sinks of different power. This problems can
be solved with the use of a graph of exergy and economic expenditures for the pairwise
interaction of flows.

The purpose of the study is to specify the concept of exergy schedule and economic
costs applied to energy supply systems (ESS).

We shall interpret a graph of the exergy and economic expenditures of an ESS,
having an arbitrary structure, as a bipartite graph Z such that the set of its nodes C
corresponds to the heating H and heated C flows, and the set of its arcs D to a possible
distribution of the exergy and economic expenditures in the corresponding elements of this
ESS in the course of interaction between the heating and heated flows.

A symmetric graph represents an oriented graph, whose arcs can be grouped into
pairs of parallel but oppositely directed arcs. Such graphs, having no isolated nodes, are
convenient for studying complex interrelated systems.

If we have determined the optimal pair of elements (ai, aj), corresponding to the
sequence of nodes, beginning from the root of the foretree and finishing by a suspended
node, giving a matrix of unit dimension, then the obtained sequence of elements forms a
single-contour system with the minimum level of exergy and economic expenditure.

For finding the optimal solution it is advisable to use the method of branches and
boundaries, which enables one to improve the solution simpler than with the application of
different methods of exergy analysis.
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Introduction. An energy supply system represents an assemblage of dissimilar
elements with a complex scheme of technological connections [1, 2]. The processes of the
transformation, transfer, and redistribution of different kinds of energy, accompanied by
changes in the parameters of state and flow rates of working media, take place in this
system.

Analysis of recent researches and publications. The combination energy sources —

energy sinks is an integral part of an energy system. For energy supply systems, the
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problem of optimal choice of the complex mentioned above is quite substantial. The
optimization problem becomes especially important in those cases where there are several
different energy sources, including, e.g., renewable energy sources, and several energy
sinks of different power.

As shown in [3, 4], the problems of this class can be solved with the use of a graph of
exergy and economic expenditures for the pairwise interaction of flows.

The purpose of the study is to specify the concept of exergy schedule and economic
costs applied to energy supply systems (ESS). In this case, we can consider the heat source
as a heating (hot) flow, and the heat consumer - as a heated (cold) flow.Let us concretize
the concept of a graph of exergy and economic expenditures as applied to energy supply
systems (ESS). In this case, we can consider the heat source as a heating (hot) flow and the
heat consumer as a heated (cold) flow.

Materials and methods. We shall interpret a graph of the exergy and economic
expenditures of an ESS, having an arbitrary structure, as a bipartite graph Z = (CUH, I')
= (CUH, D) such that the set of its nodes C U H corresponds to the heating H = {hy, h;....,
hj,..., hn} and heated C = {cy, C;..., Ci...., Co} flows, and the set of itsarcs D = {h;, ¢i}, i
=1 2., m j=1 2., n to a possible distribution of the exergy and economic
expenditures in the corresponding elements of this ESS in the course of interaction
between the heating and heated flows.

It is worth noting that a bipartite graph has the following property: the set of its nodes
V can be divided into two subsets V; and V, in such a way that each rib of this graph G
connects nodes from different subsets (e.g., the ribs of the graph G connect subsets V;
and V).

It is easy to show [5] that a graph of exergy and economic expenditures is a simple

graph of the form
HNC=0, (1)
(VhieH)I',h; e C, (2)
(VeieC)ne; = . (3)
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A graph of exergy and economic expenditures is an oriented and asymmetric graph.
A graph is called asymmetric if it has no automorphisms different from the identical one.
Here, the isomorphism of a graph G onto itself is called its automorphism. Thus, every
automorphism of the graph G is a substitution of the set of nodes V, preserving
contiguities.
Moreover, the connectivity of a graph of exergy and economic expenditures has a
limited character and obeys the condition
(Vhie H)I'hhj=O, (Ve e O)T;! ¢;= . (4)
Consider successively a series of additional definitions. We interpret a covering of a
graph of exergy and economic expenditures Z = (CuUH, D) as such a subset of arcs D <
D for which
vhi e H, 3(h, ¢) € D |h, ¢) = D +h;; (5)
V¢ eC, 3h,c)e D |hc) cD-h (6)
It is easy to see that relations (5) and (6) represent the necessary and sufficient
condition of the existence of a covering of a graph of exergy and economic expenditures,
I.e., a graph of exergy and economic expenditures always possesses a covering. The
covering represents combinatorial configurations connected by the multivalued mapping
of one set onto another. In the problems of coverings, the possibilities of constructing
efficient algorithms for the solution of these problems are studied. This means that, for
each heating and each heated flow, one can always find at least one flow with which the
flow under consideration can enter the process of heat exchange.

A covering Dy = D is minimum if
vD <D, [Dy|<[D]. (7)

In the general case, we have

H|<[Do;

CI<|Dy|. (8)
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As applied to an actual ESS, conditions (8) indicate that the number of interacting
couples heat source — heat consumer, being subject to consideration in the synthesized
ESS, cannot be smaller than the number of elements of greater of the sets |C| or [H|.

In the Boolean-matrix presentation, the minimum covering represents a collection of
unities such that any row and any column of the matrix contains at least a single element
from this collection, and the total number of elements of this collection is minimum.

A Boolean function of n arguments can be assigned with the help of a subset of nodes
where this function is equal to unity. This subset is written in the form of a matrix whose
rows represent the collections of values of the arguments of this Boolean function.

A matching of a graph of exergy and economic expenditures Z = (CUH, I'y) =
(CUH, D) is interpreted as a one-to-one mapping I'y with a number of arcs V < D such
that

(Vh; e H¥)I', h; < T'yh;, 9)

or (V¢je C*I, ¢ I},

1=1,2,..,.m;j=12,..,n,
where the subsets C* and H* satisfy the conditions

C* < C; H* < H; |C*| = [H*|. (10)

Hence, the numbers of heat sources and heat consumers in the matching under
consideration have to be equal to one another. The necessary and sufficient condition of
the existence of a matching (according to the Koenig-Hall theorem) is

(VH* < H) [T, H*| > |[H*|. (11)

As follows from the Koenig — Hall theorem, if the elements of a rectangular matrix
are unities and zeros, then the minimum number of lines containing all unities is equal to
the maximum number of unities which can be chosen in such a way that, among them, one
cannot find two unities located on the same line.

A matching Vo< D is maximum if

(VV < D) [Vo| > V], (12)

I.e., the maximum possible number of couples heat source — heat consumer is taken

into account in this matching. Condition (11) guarantees consideration of the entire set of
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heat sources in finding the maximum matching. In order to guarantee such a consideration
for the entire set C of heat consumers as well, the condition
(VC* < C) ' = In C*| > |C¥| (13)

has to be satisfied. Conditions (11) and (13) imply that |C| = [H].

In actual ESS, both cases |C| < |H| and |C| >|H]| are possible, and the variant |C| > |H]|
can be met much more often (for example, the heat supply of several hundreds of
consumers from a single regional boiler plant). Then, in finding the maximum matching, it
IS necessary to introduce an additional number of flows (fictitious) leading to |C| = [H]
(e.g., a single regional boiler plant is represented as a fictitious set of several hundreds of
small boiler plants for the corresponding heat consumers).

The maximum matching is always complete. The converse proposition in the general
case is incorrect.

We interpret a support of a graph of exergy losses Z = (CuUH, I';) assuchaset S
H < C for which

Vv (hic)) = Dl hj = S,orcj = S, (14)

i.e., at least one of the nodes of each arc of this graph is included to the set S.

The support Sq = S ofagraph Z=(CuH, D) is minimum if
VS c HUC, |So <[S|. (15)
As applied to the synthesized ESS, the minimum support of a graph Z = =(CUH, I')
represents a set So < H w C of heat sources and consumers with the minimum total
number of elements Sy, = min |S| such that the number of variants of their joins both
between themselves and with the remaining set (CUH — Sy) proves to be maximum. In
other words, each of the subject couples heat source — heat consumer in the ESS will
include at least one of the elements of the set Sy. Furthermore, as follows from the Koenig

theorem,

|Sol = [Val. (16)
Equality (16) serves as a basis in the construction of an algorithm for finding the

minimum support of a graph of exergy expenditures.
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Results and discussion. Consider the matrix form of an algorithm for the optimal
synthesis of a single-loop circular heat supplying system [6, 7], based on the method of
finding the Hamiltonian contour [8] of the symmetric graph of thermal and economic
expenditures Z = (A, U) shown in Fig. 1.

Recall that a route (contour) is called a Hamiltonian chain (Hamiltonian cycle) if it
contains all nodes of the graph and passes through each of them once. A series of
conditions of the existence of Hamiltonian cycles is well known: the graph does not have
loops and multiple ribs, and the numbers of its nodes n and ribs m satisfy the conditions
n>3m>0,5n’-3n+6).

A symmetric graph is node- and rib-symmetric, i.e., any pair of its nodes is similar,
and any pair of its ribs is similar as well.

It represents an oriented graph, whose arcs can be grouped into pairs of parallel but
oppositely directed arcs. Such graphs, having no isolated nodes, are convenient for

studying complex interrelated systems.

Fig. 1. A symmetric graph of exergy and economic expenditures for a circular

energy supply system

For finding the optimal solution, researchers prefer to apply the method of branches
and boundaries, which makes it possible to obtain a solution simpler than with the use of
different methods of exergy analysis [6, 7]. The thermal and economic estimate of the

interaction of a couple of flows ij is given by

Z;nin =min ZZZU— _ (17)
i
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The corresponding graph of energy and economic expenditures is presented in Fig. 2.
The possible values of exergy and economic expenditures in the system are equal to Z;; =Z

(a, &), Va, € A, va; € A, where Vv is the matrix of exergy and economic expenditures of
dimension m x m (Fig. 3).

The value of the sum Zs = Zzimn +Zz;“‘” gives the lower boundary of the set of
i

i
solutions.
If we have determined the optimal pair of elements (a;, a;), corresponding to the sequence
of nodes, beginning from the root of the foretree and finishing by a suspended node,
giving a matrix of unit dimension, then the obtained sequence of elements forms a single-

contour system with the minimum level of exergy and economic expenditures.

C1

Fig. 2. A graph of exergy and economic expenditures
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Fig. 3. A matrix of thermal and economic expenditures corresponding to the

graph of thermal and economic expenditures in Fig. 1
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Conclusions and perspectives. For finding the optimal solution (Fig. 3), it is
advisable to use the method of branches and boundaries, which enables one to improve the

solution simpler than with the application of different methods of exergy analysis [9].
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EKCEPI'O-EKOHOMIYHA OIITUMI3ALIA
KOMIUVIEKCHUX CUCTEM EHEPTOITIOCTAYAHHSA
b. X. /Ilpazanos, A. B. Miwenko

AHoTani. Onmumizayia cucmemu eHepeoOnOCMAa4aHHs CMAae 0COOIUBO BANHCIUBOIO
npobnemoro 8 mux 6uUnaodKax, KOAU ICHYE KilbKA PIZHUX 0dxcepell eHepeii, GKIoYaroyl,
Hanpukaao, 8IOHOGNI0BAHI 0xcepella enepeii ma Kiibka 00 ’ekmig piznoi nomyosicnocmi. L]i
npoobemMU MONCHA BUPIUIUMU, BUKOPUCMOBYIOYU 2pagh eKcepaii ma eKOHOMIYHUX 8Uumpam
0J151 HONAPHOI 83AEMOOTT NOMOKIB.

Memoto docniodicennss € KOHKpemu3ayis KoHyenyii epaga excepeiti ma eKOHOMIYHUX
suUmMpam, wo 3acmocosyromucs 0o cucmem enepeonocmadanus (CEII).

12
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Mu 6ydemo inmepnpemysamu epag excepeii ma exonomiunux eumpam CEII, axuii
MA€ O00BIIbHY CMPYKMYPY, K 080004bHUL 2pag Z, makuti, wo Haoip tioco 8y3nig C
gionosioae HaepieanHio H i1 nacpimum nomoxam C, a cykynuicmes uoeo oye D -
MOMCIUBOMY DO3NOOINY eKcepeii ma eKOHOMIUHUX eumpam Yy 6IONOBIOHUX elleMeHmax
oanoi CEII nio uac 83aemo0ii midic 2paroyum nomoKamu ma nOmoKOM, W0 Ha2pieacmuCsi.

Cumempuynuil epag € opicHmoeaHum 2paghom, oyeu K020 MONCHA 32PYNY8AMU 8
napu napaneibHux, aie NpomuiledcHo cnpsamosanux oye. Taki epagu, wo ne maroms
130/1b08AHUX 8Y37118, 3PVUHI OJISl BUBHUEHHS CKAAOHUX 83AEMONOG AZAHUX CUCTEM.

Akwo Mu  6UBHAUUMO ONMUMANbHY napy elemenmis (a; @), wo eionosioae
NOCNIO0BHOCMI 83718, NOYUHAIOYU BIO0 KOPEeHs 0epeda i 3aKIHUYIoUU NIOBIULEHUM B)310M,
KL CKA0aromv Mampuyio O0OUHUYHOI PO3MIDHOCMI, MO OMPUMAHA NOCAIO08HICIb
eleMeHmi8 YMBOPIOE OOHOKOHMYPHY CUCMEMY 3 MIHIMANbHUM pieHeM eKcepeii ma
EeKOHOMIYHUX 8UMPAm.

s nowyxy onmumanbHo2o piuleHHs OOYiIbHO 8UKOPUCMOBY8AMU Memoo 20K ma
Medrc, AKULL 00380J8€ BOOCKOHAIUMU PIULeHHs NPOCMIlUe, HIXC i3 3aCMOCYBAHHAM PIZHUX
Memooie ananizy ekcepeii.

Kuro4oBi ciioBa: cucmema enepzonocmauanus, ekcepeis, CUMEMPUYHUIL 2pag

9KCEPI'O-OKOHOMUYECKAS OITTUMU3ALIUS
KOMIIVIEKCHBIX CUCTEM HEPI'OCHABXEHUS
b. X. /Ilpazanos, A. B. Muwenko

AHHOTAIUSA. Onmumuzayusi cucmembl dHeP2OCHAOINCEHUs] CMAHOBUMCS O0CODEHHO
BAJICHOU NpoOAeMOU 8 mex CAy4asx, Ko20a Cyujecmeyem HeCKOIbKO PAa3IUYHbIX
UCMOYHUKOB8 SHEpeUulU, 6KIIUas, Hanpumep, 60300HO081deMble UCMOYHUKU DSHEpeUUu U
HEeCKOJIbKO 00beKmMOo8 pa3IuiHOU MOWHOCMU. Dmu npooO.iemvl MOHCHO Peuums, UCHONb3)sL
epagh akcepauu u IKOHOMUYECKUX 3ampam 0Jisi HONAPHO20 83AUMOOEUCMBUS NOMOKOS.

Lenvio uccneoosanus se6naemcs KOHKpemuzayusi KOHYyenyuu epaga skcepeuu u
IKOHOMUYECKUX 3ampam, npumensemvie Kk cucmemam snepeocnabxcernus (CIC).

Mpuvi 6yoem unmepnpemuposams 2pag skcepeuu u s3xonomuyveckux zampam COII,
umMerowull NPoU3BOIbHYI0 CIMPYKMYpPY, KAK 08YX00abHbIl epad) Z, makoul, 4mo Habop e2o
y3nos C coomeemcmeyem Hazpesy H u nacpemvim nomoxam C, a cogokynnocms e2o oye D
- BO3MOJICHOMY  pacnpeoeneHusi  9Kcepeuu U  IKOHOMUYECKUX  3ampam 8
coomeemcmeyrowux snemenmax oannou CIC npu @3aumoodelicmeuu medxncoy eperomum u
HazpesaemviM HOMOKAMU.

Cummempuunsviii  epag npedcmasisem coO0U OPUEHMUPOBAHHBII 2pagd, Oyeu
KOMOPO20 MOMNCHO C2PYNNUpPOBaAmMb 6 Napbl NAPALIEAbHbIX, HO HNPOMUBONONOHCHO
HanpagnenHvlx Oye. Takue 2pagul, He umerowue U30AUPOBAHHBIX V37108, YOOOHBI Ol
U3YUEHUS] CTIONCHBIX 83AUMOCBAZAHHBIX CUCTIEM.

Ecnu mvl onpedenum onmumanvHylo napy 1emeHmos (a;, @j), coomeemcmeyiouyio
nOCNe008amMeNbHOCIU V3108, HAYUHAS OM KOPHS 0epesa U 3aKaHYU8As NOOBeUleHHbIM
V3/10M,  KOMOpbvle COCMAGNAIOM Mampuyy eOUHUYHOU pPAZMEpHOCMU, MO HOJYYeHHAs
nocn1e008amenbHOCMb IeMeHmo8 00paszyem O0OHOKOHMYPHYIO CUCMEMY ¢ MUHUMATbHBIM
VpOBHeM IKcep2ul U IKOHOMUUECKUX 3ampam.
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s noucka onmumanvHo20 peuieHus yeaecoobpazHo UCNOIb308aMb MEMo0 8emeaell
U epamuy, KOmMOpwIU NO36OIAENM YCOBEPUIEHCINBOBAMb peuleHue npowe, 4Yem C
npumeHeHuem Opy2ux Memooo8 aHaiu3a IKCepeuu.

KuiroueBrble cioBa: cucmema Inep2ocHadHcenus, IKCEPUsl, CUMMEMPUYHBLIL 2pagh
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