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Abstract. The study of the movement of material particles along a horizontal disc
with orthogonally attached blades during its rotation around a vertical axis is the
theoretical basis for the design of dispersing bodies of mineral fertilizers.

The movement of a particle along the rectilinear blades of a horizontal disk rotating
around a vertical axis has been thoroughly investigated. Of the curved vanes, we
considered a vane in which the profile has the shape of a logarithmic spiral. But it is also
important to find a blade profile that would satisfy these conditions based on the given
initial conditions.

The purpose of the article is to find a profile of a curved vane that would meet the
specified requirements for the movement of a particle along this vane during rotation of a
horizontal disk around a vertical axis.

When rotating a disk with a curved blade, the particle performs a complex
movement: transferred due to the rotation of the disk and relative along the blade. To
compile the differential equations of motion, it is necessary to find the vector of absolute
acceleration, which includes three components: acceleration in translational motion,
acceleration in relative motion, and Coriolis acceleration,

The generalized differential equations of particle motion along rectilinear and curved
vanes are derived. A comparative analysis of the kinematic parameters of motion for
different shapes of blades was made.

It was established that with the same angular velocity of rotation of the disk and the
same initial conditions, the shape of the curved blade significantly affects the absolute
velocity of the particle at the time of its exit from the disk. With the shape of the blade, in
which there is no pressure of the particle on it, the absolute speed of the particle is
minimal. As the pressure, which is constant along the entire length of the blade, increases,
its profile gradually changes, approaching the radial direction, and the absolute speed of
the particle increases. However, the maximum absolute speed that can be obtained due to
the curved profile of the blade under the condition of constant pressure on it is
proportional to the particle speed for rectilinear blades. Under the condition of the same
pressure of the particle on the blade at different angular velocities of rotation of the disk,
the profiles of the blades will be different, but the absolute speeds of the particle at the
time of its exit from the disk will be the same.
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Introduction. The study of the movement of material particles along a horizontal
disc with orthogonally attached blades during its rotation around a vertical axis is the
theoretical basis for the design of dispersing bodies of mineral fertilizers. The operation of
dispersing discs with rectilinear blades has been sufficiently studied theoretically. The
study of the effect of the shape of the curved blade on the kinematic parameters of the
particle movement can be useful in the design of the corresponding working bodies.

Analysis of recent research and publications. The movement of a particle along the
rectilinear blades of a horizontal disk rotating around a vertical axis is quite fully
investigated in papers [1-3]. As for curved vanes, papers [1, 2] consider a vane whose
profile has the shape of a logarithmic spiral. At the same time, the shape of the blade is set
in advance and the kinematic parameters of the particle movement are investigated. It is
quite logical to pose the inverse problem: to find a blade profile that would satisfy these
conditions based on the given initial conditions.

The purpose of the study is to find the profile of a curved vane that would meet the
specified requirements for the movement of a particle along this vane during rotation of a
horizontal disk around a vertical axis.

Research materials and methods. When rotating a disk with a curved blade, the
particle performs a complex movement: transferred due to the rotation of the disk and
relative along the blade. To compile the differential equations of motion, it is necessary to
find the vector of absolute acceleration, which includes three components: acceleration in
translational motion, acceleration in relative motion, and Coriolis acceleration. In work [4]
it is shown that this vector is conveniently found in the projections on the orthoses of the
accompanying trihedron of the curve of the transfer motion, which will be a circle for the
rotational motion of the disk. In Fig. 1a, the periphery of the disc is marked with a larger

circle, and the trajectory of the transfer movement is marked with a smaller circle. The
accompanying trihedron is rigidly connected to the disc, and ort zdirected along the
tangent to the trajectory of the transfer movement in its direction, ort n—along the main

normal towards the center of curvature, ort b —binormal — projected to a point at the origin
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of the coordinates. We will assume that the curvilinear shape of the blade is given by the
dependencies p. = p.(s)and p, = p,(s),where s —is the arc length of the transfer motion
trajectory. Fig. la shows the particle in the t. M on the blade and its coordinates are

marked p.in p_ the projections on the vertices of the trihedron. The tangent Mx to the

scapula at this point makes an rangle with the ortho «. Thus, the trajectory of the

particle's relative motion is determined by the shape of the curved blade.

Fig. 1. Graphic illustrations for compiling the differential equations of motion of a
particle along a curved disk blade:
a — curvilinear blade in the system of the accompanying trihedron of the trajectory of the
transfer movement - a circle of radius r; b — vector of absolute acceleration w in

projections on the axis of two systems forming an angle between thema

Research results and their discussion. Theoretical results of finding the absolute
acceleration of a point on the vertices of the accompanying trihedron during its movement
along a known trajectory in the system of this trihedron were obtained in the paper [ 4 ].

According to these results, for our case, the absolute acceleration will be written:
W =22 (p! - 2kp, —k?p, )+ V2 (o + 2kp! —k’p, +k), (1)
where is k =1/r —the curvature of the trajectory of the transfer motion; v, —the speed of

the transfer of the origin of the coordinates of the trihedron along the circle of radius r.
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Since the movement of the particle occurs in the direction of the tangent Mx , then the
differential equation of motion must be added in the projection onto this tangent. To do
this, we project the absolute acceleration vector onto the direction of the tangent and onto
the direction perpendicular to it. We write down the components of the absolute

acceleration vector (projection onto the vertices of the trihedron):
W, =Vi(p! = 2kp, —K?p, ) W, =V} (p] +2kp! =k’ p, +k). 2)
Fig. 1b shows the vector of absolute acceleration W in the projections on the vertices
of the accompanying trihedron and on the axis Oxand Oy, which are, respectively,
tangent and normal to the blade. Let's establish a relationship between these projections,
based on the fact that there is an angle between the coordinate axes of both systems «. We
project each of the components W_and W_onto the axis OxandOy and we obtain by the

well-known formulas for rotation of the axes:

W =W cosa +W_sin¢; W, =-W sina +W, cosa. (3)
Since o —the angle it forms is tangent to the scapula with ortho 7, it is known that

!
Pn

y !

T

tga = from where:

P sing=——Pn (4)

Substituting (2) and (4) into (3), we obtain the projections of the absolute acceleration

COSa =

vector on the system axis Oxy:

W, = —=— [(pé’ —2kp; —k*p, )pé + (p;' +2kp. —k*p, + k)p;] J

Ve2 14 ! ! 14 ! ! (5)
Wy = —~— (o — 2K, — k20, )0, + (o1 + 2K, —K2p, +k)o!].
p‘[ + pn
does not move F=mW, in the direction of the axis, so the force is Oy balanced by the

force of the particle's pressure on the blade. We will assume that the coefficient of friction

of the f particle on the surface of the disk and on the surface of the blade is the same, so

the total force of friction will be written:

110



"Enepzemuka i agmomamuxa'’, Ne4d 2022 p.

Frp. = fmg + fmW, =

Tep

2

= fmg + fmﬁ[— (p;’ —2kp! _kzpr),o,ﬂ +(,0;' +2kp! —k?p, +k),0;1 -(6)

where m —is the mass of the particle; g = 9.81 m/s °.
The only applied force will be the frictional force directed in the direction opposite to
the particle’'s motion. Thus, the differential equation of motion of the particle in the

projection onto the tangent (axis Ox) will be written:

mv?>

ﬁ[("f ~2kp, —k2p, Jo! + (o] + 2kl —K2p, + K)o, ]=
T n mV2 (7)
=~ fmg— f ——=—|-(p! ~ 2kp}, ~K?p, )} + (o] + 2kp! ~K* p, +K)p! ]
JE o

Taking into account that v, = wr = w/k,where is @ —the angular speed of rotation of

the disk, as well as shortening by mass m, equation (7) can be written:

2
(o1~ 2kp; — K7, Jp! + (0] + 2Kkp! —K*p, + K)or ] =
Ko +p, ®
2
—fg [ (o —2ko! —k2p.)p! + (0" + 2ko! —KZp, + K)o
g k2 [p;2+p;2[ (pr Ion pr)pn (,On pr pn )IOT]'

The differential equation (8) cannot be solved without imposing additional

conditions, since it includes two unknown dependencies p. = p.(s)and p, = p,(s). Such

conditions can impose restrictions on the shape of the blade or, for example, the magnitude
of the particle pressure on it. You can look for such a shape of the blade so that the
pressure on it is equal to zero; in this case, its profile will coincide with the relative
trajectory of the particle's movement on the disc without a blade. To describe this case, it
IS necessary to equate the expression in the last square brackets of equation (8) to zero.
This will be an additional condition. The resulting system of equations after simple
transformations can be reduced to the form obtained in work [4] (formula (44), p. 281)
when solving the problem of finding the relative trajectory and motion of a particle on the

surface of a rough disk without blades.
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Consider the case when p, = p, = p, =0.This means that the movement of the

particle will occur along a rectilinear vane located at a distance rfrom the center of the

disk (the vane coincides with the ortho 7). In this case, equation (8) takes the form:

P42k —K2p, = — % (o? 1 gk). )
w
Equation (9) is linear and can be integrated . Its solution is a dependency:
A S et el ke (10)
! kew® ' ’

where c,, ¢, —constant integrations.

When p, = p. = p! =0the particle will move along a rectilinear disk blade fixed in

the radial direction. Equation (8) takes the form:
" ' 2 k 2
P+ 2Tkp, —kp, =~ (" + Tok) (11)

The solution of equation (11) is the dependence:

f —f—y1+ 12 |ks
p =8 ol )

@

(—fﬂ/ﬁ jks
+c,e : (12)
In equations (10), (12) the independent variable is the arc coordinate sof the
trajectory of the transfer movement of the trihedron. In known works on the movement of
a material particle on rough surfaces [1-3], the independent variable is time t. Taking into
account the constant angular speed w of the disk rotation, we can write:
ot

S=rot=—.
K (13)

Substitution (13) in (10) and (12) gives dependences in the time function as p_well

Py
p. = f (% + rj + cle‘(Jﬁ”)‘”t + Cze(m‘f)w‘. (14)
@
o :f_%+ I‘+Cle(_f_ 14 f )a}t +C2e(—f+ﬂ)m. (15)
®

Equation (14) exactly coincides with a similar equation in work [2] (equations
(7.1.8), (7.1.9), p. 366), although they were obtained with completely different approaches.
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Equation (15) differs only in the front sign rfrom the similar equation in work [3]

(equation (8), p. 23), however, when selecting the appropriate initial conditions, it is
possible to show their complete correspondence.

Now let's find the shape of the blade, which would ensure a constant pressure of the

particle on it. We will compare the amount of pressure on the blade with the amount of

pressure on the disc. The force of pressure on the blade is denoted by the expression
F..=Pmg,where p-is the coefficient. At p>1, the pressure on the blade will be
p twice as high as on the disc and vice versa.

From taking into account this one superimposed additional conditions equation (7)

turns into the system:

{mwy = pmg; .

mW, = fmg(1+ p).
After _ abbreviation equations system (16) per mass m and substitutions W, and W

with (5) simple transformations, we reduce it to the form:

( 14 ! gk2 p ! !
pl—=2kp —K’p, =~ {—pn +(f + p)pf}
o’ PP+ p LT
<
- 17)
n !/ gk2 p ! !’ (
ph+2kp. =k p, +k = {—p,—(f + p)pn}
o’ \plt+pt LT

When p =0, the obtained formulas (17) exactly coincide with the formulas in the
article [4] (formula (44), p . 281).

Integration system (17) using numerical methods showed the following resultsO.

At p =0, the curved blade has the form in which missing pressure on her with
extraneous particles _ In fig. 2, and the following ones trajectory relative movement (i.e
blade profile) is marked letter L (blade) with a number equal to the value of the coefficient
p, and the absolute trajectory has similar marking from that by the difference that is in
front of the number letter T (trajectory). From fig. 2, it can be seen that a particle that has
made approximately half a revolution slides along a circle of radius r , and then moves

away to the periphery of the disk, making almost two revolutions. This is fully consistent
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with the data obtained in work [2] at the angular speed of disk rotation o= 25 rad/s (Fig.

7.3.2, page 417).
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Fig. 2. Profiles of curved vanes and the corresponding absolute trajectories of
particle movement at different angular speeds of rotation and values of the
coefficient p:
a— w=25rad/s; p=0; b— w=25radls; p=1,; 2; 3;
c— w=25radls; p=3.3;35; d- w=25;30; 35;40rad/s;p=3

At the moment of departure from the disc, the particle's absolute speed reaches 1.13
m /s. When the coefficient p increases, the shape of the blade changes, getting closer to the
radial direction. At the same time, the absolute trajectory also changes (Fig. 2b). As the
coefficient p increases, the relative velocity of the particle decreases, but the absolute
velocity increases. This has its own explanation. Absolute speed is the geometric sum of
velocities in translational and relative movements. At p=0, the vectors of these velocities
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are directed along straight lines, the angle between which is close to 180 °, that is, they
have the opposite direction, so the geometric sum of their components is close to the
difference in absolute values. As the coefficient p increases, the angle between the
direction of action of these speeds approaches 90 °, so the geometric sum (absolute speed)
increases. With further growth of the coefficient p , the moment comes when it is
impossible to build a blade that would ensure the given condition. In fig. 2, ¢ shows the
shape of the blade and the absolute trajectory for two values of the coefficient p : p=3.3
and p=3.5 . If everything is clear for p=3.3, then for p=3.5 it is clear that only a limited
part of the scapula can fulfill this condition. The absolute trajectory at p=3.5 turns into a

circle. This can be understood from the graphs of relative (Fig. 3, a) and absolute (Fig. 3,

b) velocities.
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Fig. 3. Graphs of the relative and absolute speeds of particle movement at different
values of the coefficient p:

a — graphs of relative speeds; b — graphs of absolute speeds

It can be seen from them that at s 20.13 m the relative velocity of the particle becomes
zero. The particle moved along the blade and stopped in relative motion, continuing to
rotate together with the disc with a constant absolute speed in a circle equal to the transfer
speed of the end of the blade (Fig. 3, b). Thus, by increasing the pressure on the blade, we
can find its shape for the limit value p for which movement is still possible. At the same
time, the absolute speed at the moment of descent from the disk reaches its maximum
value (in our case, 7.64 m /s for p=3.3). In the work [2], the value of 8.93 m/s is given for
a rectilinear blade under similar initial conditions (p. 376).
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Fig. 2, d shows the profiles of the blades and the trajectory of the absolute movement
for different angular speeds of the disc rotation and a constant value of the coefficient p=3.
At the same time, it was found that in all cases the absolute speed of the particle at the
time of exit from the disc will be the same and equal to 7.25 m/s.

The limited scope of the article does not allow us to give the formulas for determining
the relative and absolute velocities and the absolute trajectory of the particle movement,
which we used. Their strict mathematical derivation is given in the work [4].

When p is introduced, the friction force (6) becomes constant, since the following
components are constant: the friction force of the particle on the disk and on the blade.
Therefore, in equation (7), the right-hand side is constant, from which it follows that the
left-hand side must also be a constant value. But the left part represents a driving force
directed in the direction of movement opposite to the force of friction. Thus, the ratio of
the driving force to the weight of the particle will also be a constant value, denoted by g .
It is clear that between the coefficients p and g there is a relationship. Having passed
conversion on input coefficient g similarly to the transformations when the coefficient p is

introduced, we obtain:

k? f+q
”_2k r_k2 — g r+ [
pr pn pz’ a)zm{qpr ( f ]pn_

2 ' (18)
Pl +2kp! —Kk?p, +k=— % {qp;—[”q p;}

At comparing systems (17) and (18) shows that they are on the left parts similar.

Equating right part, we obtain the relationship between the coefficients p and q:
p+q=-—f. (19)
From dependence (19), it is possible to establish a relationship between the
coefficients p and g for the same blade shape. If the blade is calculated for a certain value
of the coefficient p , then the coefficient g for the same blade is found from the expression
q=-(f+p), where the opposite signs in front of the coefficients indicate the opposite

directions of action of the driving force and friction force.
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Fig. 4. Kinematic parameters of particle motion at =25 rad / s and q =0:
a — shape of a curved blade; b — absolute trajectory of particle motion; ¢ — graphs of

relative V, and absolute V, speeds

It remains to determine the shape of the blade at g =0. From the definition of the
coefficient g, it follows that the driving force will be equal to zero, so the particle in
relative motion must remain at rest. However, the integration of system (18) at q =0 shows
that this is not the case. In fig. 4 shows the shape of the blade, the absolute trajectory of the
particle, and graphs of relative and absolute velocities. The initial conditions are selected
so that the blade has a closed form and consists of two symmetrical parts. The particle
slides along the inside of the blade without leaving the disc. At the same time, the relative
and absolute speeds have a periodic character. At the moment when the relative speed (the

speed of sliding along the blade) is minimal, the absolute one acquires a maximum value,
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which was to be expected, since the absolute speed of the particle in this case is closest to
the transfer one.

Obviously, this shape of the blade is not suitable for scattering loose materials. As for
the theoretical explanation of this shape of the scapula, it is as follows. When p=0 in
system (17) and when g =0 in system (18), their right parts are a vector tangent to the
trajectory of the relative motion, that is, to the blade profile. It can be shown that they are
mutually perpendicular. This means that the driving force directed tangentially in the first
case becomes perpendicular to the blade in the second. But the particle does not move in
this direction, therefore, at g =0 in system (18), the value of the coefficient f has no
significance. The particle is forced to move by a force that is directed tangentially to the
blade in the second case, and in the first case was perpendicular to it, i.e., the former force
of pressure on the blade.

Summarizing the obtained solutions of differential equations (10) and (12) for
rectilinear vanes and systems of differential equations (17) and (18) for curved vanes and
their analysis under the same initial conditions, the following can be summarized.

Conclusions and perspectives. At the same angular speed of rotation of the disk and
the same initial conditions, the shape of the curved blade significantly affects the absolute
velocity of the particle at the time of its exit from the disk. With the shape of the blade, in
which there is no particle pressure on it (that is, in the case when the profile of the blade
copies the trajectory of the relative movement of the particle on a disk without blades), the
absolute speed of the particle is minimal. As the pressure, which is constant along the
entire length of the blade, increases, its profile gradually changes, approaching the radial
direction, and the absolute speed of the particle increases. However, the maximum
absolute speed that can be obtained due to the curved profile of the blade under the
condition of constant pressure on it is proportional to the particle speed for rectilinear
blades. Provided the particle pressure is the same on the blade at different angular
velocities of the disc rotation, the profiles of the blades will be different, but the absolute

velocities of the particle at the time of its exit from the disc will be the same.
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JOCJIIJI)KEHHSI PYXY MATEPIAJIBHOI YACTUHKH B310BXK
NPSIMOJITHIMHUX I KPUBOJITHIMHUX JIOITATOK HA
T'OPU30OHTAJBHOMY IUCKY, IKHM OBEPTAETHCS HABKO.JIO
BEPTUKAJIBHOI OCI

C. @. ITununaxka, A. B. Hecgioomin

AHoTaNis. /{ocniodxceHHs pyxy MamepianbHuxX YACMUHOK NO 20PU3OHMATbHOMY
OUCKY [3 OpPMO2OHANbLHO NPUKPINJIEHUMU JONAMKAMU HPU U020 00EPMAHHI HABKOJIO
BEPMUKATILHOT OCI € MeopemuiHol0 0CHOBOI NPU NPOEKMYBAHHI PO3CIIOBANbHUX OP2aHI8
MiHepanbHUxX 000pus.

Pyx uacmunxu 630062 NpAMONIHIUHUX JONAMOK 20PU3OHMATLHO20 OUCKA, WO
00epmaemobcsi HABKOI0 BEPMUKATILHOL OCI, 0CUMb NOBHO 00CNI0NCEHO. 13 KPUBOIIHILIHUX
JIONAMOK PO32TIAAHYMO ONAMKY, 8 AK0i npo@ine mae hpopmy nocapugpmiynoi cnipani. Ane
MAKONAC BAANCTUBO 34 3A0AHUMU BUXIOHUMU YMOBAMU ZHAXOOUMU NPODINL TONAMKU, AKUL
3A0080.1bHUE OU Yi YMOBU.
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Memow cmammi € 3Hax00dceHHs NPoQins KPUBONIHIUHOI NONAMKYU, SKUL
8i0n06ioas Ou 3a0aHUM BUMO2AM PYXY YACMUHKU 830084C YIEI IONAMKU Npu 00epmanHi
20PU30HMANBLHO20 OUCKA HABKOJIO 8EPMUKAILHOI OCL.

Ilpu obepmanni oucka i3 KpUBONIHIUHOW NONAMKON YACMUHKA 30IUCHIOE CKIAOHUU
PYX: NEPeHOCHUUl 3a PAaxyHOK 00epmaHHs Oucka i 8IOHOCHUL 830082 Jonamku. s
CKNAO0AHHs OUpepeHyialbHUX piGHAHbL PYXY HeO0OXIOHO 3HAUMU BeKMOop abCONIOMHO20
NPUCKOPEHHS, SAKULL BKIYAE MpU CKIA008I: NPUCKOPEHHS ) NepPeHOCHOMY DpYCi,
NPUCKOPEHHS Y 8IOHOCHOMY pyci | npuckopenns Kopionica.

Ompumarno y3aeanvHeHi Oupepenyianvhi pIiGHAHHA PYXY UYACMUHOK  Y30089iC
NPAMONIHIUHOI  ma  KpugoniHitiHoi  nonamok. IIposedenHo  nopigusibHul — aHali3
KIHEMAmU4HUX napamempis pyxy 0Jis pi3Hux gpopm jionameti.

Bcmanoeneno, wo npu o0naxogiu Kymositi weuokocmi obdepmanHs Oucka i
OOHAKOBUX NOYAMKOBUX YMOBAX (POpMA KPUBONIHIUIHOI JIONAMKU CYMMEBO BNIUBAE HA
BeNUUUHY ADCONIOMHOI WUBUOKOCMI YACTUHKU 8 MOMeHm il cxody i3 oucka. Ilpu gpopmi
JIOnamKu, 3a AKOi IOCYMHIll MUCK YACMUHKU HA Hel, aOCONIOMHA WEUOKICMb YaCMUHKU
Minimanvua. Tlo mipi 3pocmants mucky, aKutl € NOCMIUHUM NO 8CIU Q08HCUHI TONAMKU, il
npoghine NOCMYNo80 3MIHIOEMBCA, HAOAUNCAIOUUCL 00 padialbHO20 HANpAMy, a
abconromua  weuoKicms dyacmuHku 3pocmae. (QOHAK  MAKCUMATbHA — abCONOMHA
WBUOKICMb, AK)Y MOJNCHA 00€pHCAMU 34 PAXYHOK KPUBONIHIUHO20 NpOoQinio 10Namku 3a
YMOBU NOCMIUHO20 MUCKY HA Hei Cnigpo3MipHa i3 WEUOKICMIO YACMUHKU Ol
NPAMOJIHIUHUX TONAMOK. 3a YMO8U 0OHAKOBO20 MUCK)Y YACMUHKU HA JONAMKY NPU DI3HUX
KYmMOBUX WBUOKOCHAX 0bepmaHnHs oucka npo@ini nonamox 0y0yms pi3HUMU, Hpome
abconomHi WBUOKOCMI YACMUHKU 8 MOMeHM cX00y ii 3 oucka 6y0yms 0OHAKOBUMU.

KuwouoBi cioBa: Kpugoniniiini ma npAMOIIHIUHI J10RAMKU, CUIAd MUCKY,
ougpepenyianvHi pieHAHHA
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