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Abstract. The problem that describes the movement of a particle along a helical 

surface is used in the design of spiral separators. Modeling the motion of a material 

particle on helical surfaces and its investigation by modern methods of numerical 

integration and visualization makes it possible to obtain a real picture of motion in the 

absence of full-scale models of such surfaces. This makes it possible to search for helical 

surfaces to improve their operational characteristics.

The purpose of the study was to establish the regularity of the movement of a 

material particle along an oblique helicoid depending on the structural parameters of the 

surface.

The oblique helicoid has two design parameters - the pitch h and the angle   of 

the inclination of the rectilinear generating surfaces to the horizontal plane. With the help 

of these parameters, there are more opportunities to influence the nature of the movement 

of a particle along an oblique helicoid compared to a helical conoid and a wide helicoid.

The differential equations of motion of a material particle on the surface of an 

oblique helicoid under the action of its own weight were formulated. The equations are 

solved by numerical methods. The obtained results were visualized

It has been established that the movement of a material particle with a known 

coefficient of friction along the surface of an oblique helicoid can be ensured at a given 

distance from its axis by combinations of structural parameters of the surface. At the same 

time, the resolution of the surface during the separation of particles with different friction 

coefficients practically does not change. However, in the transition period (before the 

stabilization of the motion), there is a significant difference in the trajectories of particle 

motion, which increases as the angle of inclination of the rectilinear generating surfaces 

decreases. This gives reason to consider material separation at the stage of the transition 

period, which requires further theoretical and experimental research.
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Introduction. The problem of the theory of the movement of a particle on a helical 

surface is currently solved in a sufficiently complete and generalized form [1] . Its solution 

was determined by the requests of practice in the design of spiral separators. Despite the 

fact that such separators are passive working bodies and do not require energy to drive 
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them, they also have disadvantages. This is relatively low performance and low resolution 

(a small difference in the trajectories of particles with different physical and mechanical 

properties) [2] . Modeling the motion of a material particle on helical surfaces and its 

investigation by modern methods of numerical integration and visualization makes it 

possible to obtain a real picture of motion in the absence of full-scale models of such 

surfaces. This makes it possible to search for helical surfaces to improve their operational 

characteristics. 

Analysis of recent research and publications. The movement of a material particle 

along an oblique (unfolding) helicoid is considered in the works of Prof. M.I. Akimova [1] 

and Prof. P. M. Zaiki [3]. M.I. Sysoeva gave a generalized solution to the problem of 

particle movement along a helical surface of constant pitch, the axial section of which is 

an arbitrary curve [4]. As a special case, he considered an expanding helicoid, as well as 

an oblique helicoid (a surface whose axial section is a straight line inclined at a certain 

angle to the horizontal plane). All the listed problems are solved in the cylindrical 

coordinate system. Academician P.M. Vasilenko indicated the possibility of solving 

similar problems in the system of the accompanying trihedron of the particle's trajectory 

(the so-called natural coordinate system). In paper [5], in the natural coordinate system, 

the problem of the movement of a material particle along an unexpanded helical surface 

with a horizontal arrangement of rectilinear generators (helical conoid or auger) was 

solved, and in paper [6] – along an expanded helicoid formed by a set of rectilinear 

generators tangent to the helical line 

 The purpose of the study – is to reveal the regularities of the movement of a material 

particle along an oblique helicoid depending on the structural parameters of the surface. 

 Materials and methods of research. There are two structural parameters of an 

oblique helicoid (Fig. 1, a) - step h and the angle  of inclination of the rectilinear 

generating surfaces to the horizontal plane. The previously mentioned surfaces (screw 

conoid and expanding helicoid) each have one design parameter. In a helical conoid (Fig. 

1, b) =0 , so there remains one parameter - the step h , and in a spreading helicoid, the 

angle is equal to the angle of elevation of the original helical line, that is, there is a 

certain dependence between h and  [6]. Thus, there are more opportunities to influence 
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the nature of the movement of a particle along an oblique helicoid with the help of these 

parameters in comparison with the named helical surfaces. In general, a particle cannot 

move along a helical conoid for a long time. It first accelerates, moving away from the 

axis of the conoid, then slows down and finally stops [5]. This is explained by the fact that 

as it moves away from the axis of the conoid, the angle of inclination of the trajectory to 

the horizontal plane decreases and the moment comes when the particle can no longer 

overcome the force of friction. It is obvious that at small (close to zero) values of the 

angle,  such motion of the particle should also be characteristic of an oblique helicoid. 

 

Fig. 1. Linear surfaces (only the frontal projection is shown), built according to 

equations (2): 

a –  oblique helicoid ( b 0; 0 ); b – helical conoid ( b 0; = 0 );  

c – cone ( b = 0; 0 ) 
  

 Results of the studies and their discussion. To find the trajectory of the movement 

of the particle along the surface and its speed v , we project the basic equation of the 

dynamics of the point ,Fam  , where m is the mass of the point (particle), , a - the 

acceleration given to it by the force of acceleration mgF  of the particle (g =9.81 m/s 
2 

), 

on the axis of the accompanying of the Darboux trihedron of the trajectory. The Darboux 

trihedron is a moving coordinate system, the unit vertices of which are attached to the 

surface and located in space as follows. We take a point on the trajectory of the particle 

and draw a plane tangent to the surface through it. In this plane, one ortho T coincides 

with the direction of movement, that is, it is tangent to the trajectory, and the second P is 

perpendicular to T . The third ort N perpendicular to the first two and is normal to the 

surface. The main equation of the dynamics of a point in the projections onto the orthos of 
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the accompanying Darbou trihedron is reduced to a system of differential equations (the 

detailed derivation of these equations is shown in the work [6]): 
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where f is the coefficient of friction; s is the length of the arc of the trajectory on the 

surface; , , - the angles between the particle weight vector and each of the vertices of 

the trihedron T , . P , N the Darboux trihedron, respectively; k n and k d are the normal and 

geodesic curvature of the trajectory, respectively.  m is not included in system (1), since 

the equations were reduced to it. System (1) describes the movement of a material particle 

on the surface in the general case, while the angles , , , speed v, geodesic k g and 

normal k n curvature of the trajectory are functions of its arc s or another parameter that 

defines the curve on the surface. 

 Let the oblique helicoid be given by the parametric equations [3]: 

   ,tg;sin;cos   bZYX    (2) 

where b = h /2 - helical parameter of the surface – a constant value;  and - independent 

variable surfaces defining a point on an oblique helicoid - the distance from the axis of the 

helicoid to the point and the angle of rotation around the axis, respectively. 

 If the independent variables  are  connected by a certain dependence, then a line 

will be given on the surface (2). In order for this line to be the trajectory of the particle's 

motion, it is necessary to find such a relationship between  and  that the conditions of 

system (1) are fulfilled. 

 The normal curvature k n of the trajectory included in system (1) is determined by the 

coefficients of the first and second quadratic forms, and the geodesic k g – by the 

coefficients of only the first quadratic surface form. Let's find the coefficients of the first 

quadratic form of the surface (2). Partial derivatives and coefficients G , F , E will be: 
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 The grid of coordinate lines of the surface ( 2 ) consists of two families: one family is 

rectilinear generating lines, the other is helical lines. This grid is not orthogonal because 

the mean F coefficient is not zero. For further work, let's simplify the first quadratic form, 

moving to an orthogonal grid. To do this, we will leave the family of rectilinear generators 

unchanged and find a family of orthogonal trajectories to it. In this case, it is much easier 

to find the expression of the geodesic curvature of the trajectory, and the second quadratic 

form of the surface is also simplified. 

 To find orthogonal trajectories to the family of rectilinear generators, it is necessary 

to solve the differential equation: 

     .0FdEd         (4) 

By substituting the values of the corresponding coefficients from (3) into (4), after 

solving, we obtain: 

     ,cossin  bu      (5) 

where u is the integration constant. By assigning a specific value to the constant u and 

substituting (5) into (2), we obtain a line perpendicular to the rectilinear generators of the 

oblique helicoid. Since there can be many such values and each of them will have its own 

line, we take u as a new independent variable instead of . Thus, after substituting (5) into 

(2), we obtain the equation of an oblique helicoid, referred to an orthogonal grid of 

coordinate lines: 
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        (6) 
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Finally, so that the parameter u is not proportional to the length of the rectilinear 

generator, but equal to it, the directional vector of the generator must be normalized, that 

is, to go to the directional cosines. To do this, we find the module of the vector, the 

components of which are the expressions in equations (6) for the variable u. Having 

obtained the square root of the sum of their squares, we obtain: 1 / cos. Dividing each 

component by the found expression, we obtain direction cosines and equation (6) takes the 

final form: 
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          (7) 

To find the length of a line on a surface and its geodesic and normal curvatures, it is 

necessary to have expressions of the first and second quadratic forms. Let's find the first, 

second and mixed partial derivatives of equations (7): 
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The coefficients G , F , E of the first quadratic form will be: 
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The coefficients N , L , M of the second quadratic form will be: 
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Let's find the first and second quadratic forms of the surface (7) and their ratio - the 

normal curvature: 
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In order for the surface (7) to have a given line, it is necessary to establish a certain 

relationship between the variables u and . We will consider the variable u as a function of 

the variable : u= u() . Then the first quadratic form (11), which is a linear element of 

the surface and the normal curvature k n (13) will be written: 
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where u is the derivative of the variable u with respect to the parameter . The geodesic 

curvature of a line on a surface refers to the internal properties of the surface and can be 

determined through the coefficients of the first quadratic form. For a surface with a 

coefficient E=1 , the geodesic curvature can be found using the formula [7]: 
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where G , G u - partial derivatives of the coefficient G  according to the corresponding 

parameter: 
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Formula (16) implies that the line on the surface is given by the dependence between 

the variables u and  through the third parameter t : u=u(t); = (t) . We will assume that 

the dependence between the parameters  u  and  is given directly in the form u=u() , 

therefore =1 , =0 . Let's substitute these values, as well as expressions (17) and 

coefficient G from (9) into (16). We will get: 
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To substitute in system ( 1 ), we have to find expressions for the angles , , , each 

of which is formed by the direction of the weight force mg and one of the orthos of the 

Darboux trihedron. Since the direction of gravity coincides with the OZ axis fixed 

coordinate system , then the specified angles will be defined as the angles between the 

direction of the OZ axis and the corresponding ortho: (for - ort T ; for - ort P ; for - 

ort N ). The weight force vector { 0, 0, 1 } is directed downward parallel to the OZ axis , 

while we will assume that the OZ axis itself is also directed downward (this corresponds to 

the nature of the movement, since the Z coordinate of the trajectory increases with the 

increase of the parameter, and at the same time the particle moves downward). In this case, 

the cosine of the corresponding angle will be the direction cosine of the corresponding 

orthogonal to the ОZ axis , that is, the projection of this orthogonal onto the ОZ axis . 

Let's find an expression for the cosine of the angle . Projections of the tangent 

vector to the trajectory on the axis of the fixed coordinate system are derivatives of 

equations (7) with respect to the variable : 
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From the projections (19), we find the expression for the cosine of the angle : 

 
.

)sin(cos

sin)sin(
cos

2222222 bubu

bub

zyx

z














  (20) 

To determine the angle,  we find the direction of the normal to the surface in 

projections on the axis of the fixed coordinate system OXYZ . Since the normal to the 

surface is perpendicular to the vectors tangent to the coordinate lines, it can be found from 

the vector product of these vectors: 
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Substituting the partial derivatives from (8) into (21), we obtain the coordinates of the 

vector directed along the normal to the surface: 

 
 

.cos)sin(

;sin)sin(sincoscos

;cos)sin(sinsincos







2

z

y

x

buZ

bubN

bubN







  (22) 

 Using the coordinates (22), we find the expression for the cosine of the angle : 
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Finally, to find out the expression for the cosine of the angle , it is necessary to 

know the coordinates of the vector P . Since it is perpendicular to the two vectors N and 

T , then its coordinates will be determined from the vector product of the specified vectors: 
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Substituting expressions (19) and (22) into (24), we obtain the coordinates of the 

vector directed along the centroid P : 
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 By projections (25), we find the expression for the cosine of the angle : 
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Now we have all the expressions included in the system (1) in the function of one 

variable . We substitute in (1) the expression ds from (14), the expressions for the 

curvatures kn from (15) and k g from (18), and the expressions for the cosines of the angles 

from (20), (23), and (26). After simplifications, let's write the system in a form convenient 

for integration in the MatLab environment using the Simulink dynamic systems modeling 

package : 
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where A and B are expressions of variables, the designations of which are given in (25). 

The system of differential equations (27) includes two unknown functions: u = u () and v 

= v (). The integration of such a system by numerical methods is shown in [5] using the 

appropriate model. It includes three integrators, each of which must be set to constant 

integration. Three constant integrations set the initial conditions under which the 

movement of the particle begins, namely: uo sets the position of the particle on the surface 

at the initial moment of movement (distance u along the rectilinear generator); vo – initial 

speed; 0u - the direction of movement at the initial moment, which is specified in the 

curvilinear coordinate system of the surface. We will consider the movement of particles 

with initial velocities close to zero ( vo cannot be set equal to zero, since inadmissible 
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division will occur in system (27)), so the direction of entry of the particle onto the surface 

is of no significant importance. When the initial speed is significantly greater than zero, 

then its direction at the initial moment of movement at a given point on the surface plays a 

significant role, as it affects the further trajectory of movement. This is shown in the work 

[ 6 ] on the example of the movement of a particle along a unfolding helicoid. 

 If the initial velocity of the particle is zero or close to it, then its movement along the 

surface begins in the direction of the line of greatest inclination. For an unfolding helicoid 

and for other unfolding surfaces with the same inclination of the generators, this direction 

coincides with the rectilinear generator surface at all its points, and for non-expanded 

surfaces, to which the oblique helicoid belongs, the rectilinear generator is not the line of 

greatest inclination [8]. Therefore, the initial trajectory of a particle along an oblique 

helicoid will differ from a similar trajectory along an expanded helicoid. Integration of 

system (27) showed that at small values of the angle,  the movement of a particle along 

an oblique helicoid is similar to the movement of a particle along a helical conoid [5], i.e., 

after acceleration, it slows down its movement and stops. The question arises: at what 

minimum value of the angle  will the particle not stop? The answer to this question can 

be given based on the following considerations. When b=0, equation (2) describes the 

surface of the cone (Fig. 1, c). If the angle  of inclination of the elements of the cone to 

the horizontal plane (which in this case is the angle of greatest inclination) is smaller than 

the angle of friction of the particle, then its movement along the cone under the influence 

of its own weight will become impossible. True, at b0, that is, when the cone is 

transformed into the surface of an oblique helicoid, the angle of the greatest inclination 

increases, but as it moves away from the axis of the helicoid, it approaches the angle, that 

 is, to the limit, after which movement becomes impossible. This confirmed the 

integration of system (27) at an angle  smaller than the friction angle. In this case the 

movement of the particle is possible and stabilized provided that the particle hits the 

surface of the helicoid at a certain distance o from its axis. As the distance o decreases , the 

particle accelerates more and more and the moment comes when it moves along the 

helicoid away from its axis to such a distance that further movement becomes impossible. 

The particle will not stop even at small values of o if the angle  is greater than the friction 
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angle, i.e. >arctg f . In this case, its motion stabilizes after a certain time [ 3 ] and it then 

moves along a helical line at a constant distance from the axis with a constant speed v . 

 Let's find the dependencies v and  from the structural parameters of the surface  

and b and the coefficient of friction f. The distance  can be found from the equations of 

the surface (7) according to the Pythagorean theorem: 

    ).sin(cos  buYX 22          (28) 

Solving (28) with respect to u, we find the expression u = u() and its derivatives: 
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Substituting expressions (29) and v= 0 into system (27), after simplifications we 

obtain: 
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 The first expression of the system (30) was obtained in work [4] without the "minus" 

sign (in our case, the OZ axis is directed downward, so the angle  should be taken 

negative). This expression allows you to find the speed of the particle after the 

stabilization of the motion, when it moves at a constant distance  from the axis. The same 

distance  can be found from the second equation of system (30): 
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 In work [3] Acad. P.M. Zaika also gives the expression of the distance depending on 

the structural parameters of the surface and the coefficient of friction (p. 335, formula 

(6.4.30), in which a slightly different notation of the structural parameters is adopted). It 

differs from (31), but it is possible to show their identity, which was done by the authors 

of this article. 

 If in (31) we consider the coefficient of friction f to be constant, then it can be seen 

that the distance  depends on two design parameters: the angle  and the value b . 

Therefore, the same distance value  can be obtained from (31) with different 

combinations of design parameters b and . If these parameters are considered variables, 
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then equation (31) will clearly describe the surface, the horizontal sections of which will 

be curves establishing the relationship between b and  for a certain value . The 

construction of surfaces in the form of graphs with the drawing of horizontal sections 

(isolines) with the indication of the value of the function at the points of these isolines is 

provided by modern software products. In fig. 2, according to equation (31), such a surface 

is constructed when the structural parameters b are changed and  within the given limits 

using the MatLab system. 

 

Fig. 2. Curved lines establishing the relationship between the design parameters b 

and the oblique helicoid for a given distance :  

f = 0.3; b =0.01...0.1 m; =18 
0 
...45 

0
 

  

 As can be seen from Fig. 2, the given value =0.1 m corresponds to a helicoid with 

different values of b and angle . For the lower limit of the angle  taken =18 
0
 (since 

arctg 0.3 = 16.7 
0 

and at smaller values of the angle  the particle can stop) screw 

parameter b =0.0314 m (the exact value is found by equation (31)). For the upper limit 

=45 
0 

corresponds to the value b =0.04095 m. In the first case, the step is h =2 b =2 

3.14 0.0314=0.1973 m , in the second - h =2 3.14 0.04095=0.2576 m . For other 

combinations of b and , which provide =0.1 m , the step will be within the specified 

limits, that is, within 20-26 cm . If we are talking about the separation of agricultural 

materials, then the question of choosing the value arises . Its value depends on the size of 

the separating surface (diameter and pitch of the helicoid), as well as the speed of 

movement of particles and their dispersion on the surface at different coefficients of 

 



"Енергетика і автоматика", №6 2022 р. 

89 

friction. For the established motion, these parameters can be determined by formulas (30) 

(first expression) and (31). If there is a question about the moment of stabilization of 

motion, then to answer it you need to integrate the system of differential equations (27). 

 

 

Fig. 3. Graphical illustrations for the integration of the system of differential 

equations (27) of the motion of a particle at  f =0.3 and  v o 0 : 

a trajectories of particle movement at o = 0.02 m and o = 0.15 m along an oblique 

helicoid with design parameters b = 0.0314 and = 18 
0 
; 

b trajectories of particle movement at o = 0.02 m and o = 0.15 m along an oblique 

helicoid with design parameters b = 0.04095 and = 45 
0 
; 

c horizontal projections of particle movement along an oblique helicoid with structural 

parameters b =0.0314 and =18 
0 
; 

d the graph of the change in the speed of particle movement v = v ( ) with the structural 

parameters of the helicoid b = 0.0314 and = 18 
0 
; 

e the graph of the change in the speed of particle movement v = v () with the design 

parameters of the helicoid b =0.04095 and =45 
0 
; 
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f horizontal projections of particle movement along an oblique helicoid with design parameters 

b =0.04095 and =45 
0
 

 

 In fig. 3 shows the results of system integration (27) with the help of graphs, and Fig. 

3a and 3b, the movement trajectory is superimposed on the surface image. Initial 

conditions were taken for =0.1 m for the previously mentioned combinations of design 

parameters b and . The movement of the particle started at different distances from the 

axis of the helicoid and stabilized after approximately two and a half turns in both cases, 

which corresponds to a rotation angle of 15 rad on the velocity graphs (Fig. 3d and 3e) . 

It can be seen from the same graphs that the velocities are approaching constant values, the 

values of which can be more accurately calculated by the first expression of system (30). 

 

Fig. 4. Horizontal projections of particle motion trajectories with different friction 

coefficients (above) and their corresponding dependences = ( z ) (below) for a 

helicoid with the following design parameters: 

a - \u003d 45 
0 
; b = 0.04095 m;   b - \u003d 18 

0 
; b =0.0 314 m;   c - \u003d 10 

0 
; 

b =0, 1 m 
  

Let 's find out how the particles are distributed on the surface of the oblique helicoid 

if the friction coefficients are different. In fig. 4 above shows horizontal projections of the 

movement of particles with different coefficients of friction, and below – graphs of 

distance dependencies from the height of descent z. In all cases, the movement of 
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particles begins at a distance of =0.02 m. In fig. 4,a and 4,b show the previously 

considered cases at =45 
0
  and =18 

0
   respectively, and in fig. 4, in – at =10 

0 
. 

Analyzing figures 4a and 4b, it can be concluded that after stabilization of motion, 

particles with different friction coefficients come out at approximately the same distance 

from the axis of the helicoid. However, as the angle decreases,  their movement in the 

transition period differs in that the amplitude of the fluctuations of the distance  from the 

axis of the helicoid increases. At =10 
0 

(Fig. 4,c), the particle with the friction coefficient 

f =0.6 accelerated, and then stopped at a distance of 0.2 m , which was mentioned 

earlier. 

The analysis of the figures above shows that at small angles,  it is during the 

transition period (before the stabilization of motion) that the trajectories of particles with 

different friction coefficients differ significantly from each other, i.e., in this period, the 

resolution of the surface is quite large. Therefore, it is legitimate to consider the issue of 

material separation at the stage of the transition period, but this requires further theoretical 

research and experimental tests. 

In conclusion, we note that conducting such research has become possible in modern 

conditions, when existing software products allow not only to integrate systems of 

differential equations by numerical methods, but also to perform the second no less 

important stage - to visualize the obtained results. 

Conclusions. Theoretical studies have shown that the movement of a material 

particle with a known coefficient of friction on the surface of an oblique heclicoid can be 

ensured at a given distance from its axis by combinations of structural parameters of the 

surface. At the same time, the resolution of the surface during the separation of particles 

with different friction coefficients practically does not change. However, in the transition 

period (before the stabilization of the motion), there is a significant difference in the 

trajectories of particle motion, which increases as the angle of inclination of the rectilinear 

generating surfaces decreases. This gives reason to consider material separation at the 

stage of the transition period, which requires further theoretical and experimental research. 



"Енергетика і автоматика", №6 2022 р. 

92 

List of references 

1. Василенко П. М. Теория движения частицы по шероховатым поверхностям 

сельскохозяйственных машин. К.: УАСХН, 1960. 283 с. 

2. Заика П. М., Мазнев Г. Е. Сепарация семян по комплексу физико-

механических свойств. М.: Колос, 1978. 287 с. 

3. Заика П. М. Избранные задачи земледельческой механики. К.: Изд-во УСХА, 

1992. 507 с. 

4. Сысоев Н. И.  Теоретические основы и расчет сортировки “Змейка”. 

Сельхозмашина. 1949. № 8. С. 5 – 8. 

5. Войтюк Д. Г., Пилипака С. Ф. Знаходження траєкторії руху матеріальної 

частинки по гравітаційних лінійчатих поверхнях із горизонтальними твірними. 

Збірник наукових праць НАУ “Механізація сільськогосподарського виробництва”. 

2002. Т.12. К.: НАУ, 2002. С.58-69. 

6. Войтюк Д. Г., Пилипака С. Ф. Знаходження траєкторії руху матеріальної 

точки по гравітаційній розгортній поверхні на прикладі розгортного гелікоїда. 

Механізація і енергетика  сільського господарства. IV міжнародна науково-технічна 

конференція MOTROL-2003. К.: НАУ, 2003. Том 6. С. 113-126. 

7. Погорелов А.В. Дифференциальная геометрия. М.: Наука, 1969. 176 с. 

8. Войтюк Д. Г., Пилипака С. Ф. Особливості руху матеріальної частинки по 

гравітаційних лінійчатих поверхнях. Вісник Харківського державного технічного 

університету сільського господарства. Вип. 21.Механізація сільського господарства. 

Харків, 2003. С. 75-88. 

 

References 

1. Vasilenko, P. M. (1960). Teoriya dvizheniya chastitsy po sherokhovatym 

poverkhnostyam sel'skokhozyaystvennykh mashin [Theory of particles movement on 

rough surfaces of agricultural machines]. Kyiv: UASKHN, 283. 

2. Zaika, P. M., Maznev, G. E. (1978). Separatsiya semyan po kompleksu fiziko-

mekhanicheskikh svoystv [Separation of seeds according to the complex of physical and 

mechanical properties]. Moskow: Kolos, 287. 

3. Zaika, P. M. (1992). Izbrann·yye zadachi zemledel'cheskoy mekhaniki [Selected 

tasks of agricultural mechanics]. Kyiv: Izd-vo USKHA, 507. 

4. Sysoyev N. I. (1949). Teoreticheskiye osnovy i raschet sortirovki “Zmeyka” 

[Theoretical basis and calculation of the "Snake" sorting]. Sel'khozmashina, 8, 5 – 8. 

5. Voitiuk D. H., Pylypaka S. F.  (2002). Znakhodzhennia traiektorii rukhu 

materialnoi chastynky po hravitatsiinykh liniichatykh poverkhniakh iz horyzontalnymy 

tvirnymy [Finding the trajectory of the movement of a material particle along gravitational 

linear surfaces with horizontal generators]. Zbirnyk naukovykh prats NAU 

“Mekhanizatsiia silskohospodarskoho vyrobnytstva”, 12, Kyiv: NAU, 58-69. 

6. Voitiuk D. H., Pylypaka S. F. (2003). Znakhodzhennia traiektorii rukhu 

materialnoi tochky po hravitatsiinii rozghortnii poverkhni na prykladi rozghortnoho 

helikoida [Finding the trajectory of the movement of a material point along a gravitational 

unfolding surface on the example of an unfolding helicoid]. Mekhanizatsiia i enerhetyka  

silskoho hospodarstva. IV mizhnarodna naukovo-tekhnichna konferentsiia MOTROL-

2003. Kyiv: NAU, 6, 113-126. 



"Енергетика і автоматика", №6 2022 р. 

93 

7. Pogorelov A. V. (1969). Differentsial'naya geometriya [Differential geometry]. 

Moskow: “Nauka, 176. 

8. Voitiuk D. H., Pylypaka S. F. (2003). Osoblyvosti rukhu materialnoi chastynky po 

hravitatsiinykh liniichatykh poverkhniakh [Peculiarities of the movement of a material 

particle along gravitational linear surfaces]. Visnyk Kharkivskoho derzhavnoho 

tekhnichnoho universytetu silskoho hospodarstva. Mekhanizatsiia silskoho hospodarstva. 

21, 75-88. 

 

ДОСЛІДЖЕННЯ РУХУ МАТЕРІАЛЬНОЇ ЧАСТИНКИ ПО ПОВЕРХНІ 

КОСОГО ГЕЛІКОЇДА ПІД ДІЄЮ СИЛИ ВЛАСНОЇ ВАГИ 

С.Ф. Пилипака, А. В. Несвідомін 

Анотація. Задача, яка описує рух частинки по гвинтовій поверхні, знайшла 

застосування при проектування спіральних сепараторів. Моделювання руху 

матеріальної частинки по гвинтових поверхнях і його дослідження сучасними 

методами чисельного інтегрування і візуалізації дає можливість одержати реальну 

картину руху за відсутності натурних моделей таких поверхонь. Це дає 

можливість вести пошук гвинтових поверхонь на предмет покращення їх 

експлуатаційних характеристик. 

Метою дослідження було встановлення закономірності руху матеріальної 

частинки по косому гелікоїду в залежності від конструктивних параметрів 

поверхні. 

Конструктивних параметрів у косого гелікоїда два – крок h і кут   нахилу 

прямолінійних твірних поверхні до горизонтальної площини. За допомогою цих 

параметрів є більше можливостей  впливати на характер руху частинки по косому 

гелікоїду порівняно з гвинтовим коноїдом і розгортним гелікоїдом. 

Було складено диференціальні рівняння руху матеріальної частинки по поверхні 

косого гелікоїда під дією сили власної ваги. Рівняння розв’язані чисельними 

методами.  Зроблено візуалізацію одержаних результатів 

Встановлено, що рух матеріальної частинки із відомим коефіцієнтом тертя 

по поверхні косого гелікоїда можна забезпечити на заданій відстані від його осі 

комбінаціями конструктивних параметрів поверхні. При цьому роздільна здатність 

поверхні при сепарації частинок із різними коефіцієнтами тертя практично не 

змінюється. Однак в перехідний період (до стабілізації руху) спостерігається 

значна різниця у траєкторіях руху частинок, яка зростає по мірі зменшення кута 

нахилу прямолінійних твірних поверхні. Це дає підстави розглядати сепарацію 

матеріалу на етапі перехідного періоду, що потребує подальших теоретичних і 

експериментальних досліджень. 

Ключові слова: косий гелікоїд, матеріальна частинка, траєкторія руху 


