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Abstract. The problem that describes the movement of a particle along a helical
surface is used in the design of spiral separators. Modeling the motion of a material
particle on helical surfaces and its investigation by modern methods of numerical
integration and visualization makes it possible to obtain a real picture of motion in the
absence of full-scale models of such surfaces. This makes it possible to search for helical
surfaces to improve their operational characteristics.

The purpose of the study was to establish the regularity of the movement of a
material particle along an oblique helicoid depending on the structural parameters of the
surface.

The oblique helicoid has two design parameters - the pitch h and the angle p of
the inclination of the rectilinear generating surfaces to the horizontal plane. With the help
of these parameters, there are more opportunities to influence the nature of the movement
of a particle along an oblique helicoid compared to a helical conoid and a wide helicoid.

The differential equations of motion of a material particle on the surface of an
oblique helicoid under the action of its own weight were formulated. The equations are
solved by numerical methods. The obtained results were visualized

It has been established that the movement of a material particle with a known
coefficient of friction along the surface of an oblique helicoid can be ensured at a given
distance from its axis by combinations of structural parameters of the surface. At the same
time, the resolution of the surface during the separation of particles with different friction
coefficients practically does not change. However, in the transition period (before the
stabilization of the motion), there is a significant difference in the trajectories of particle
motion, which increases as the angle of inclination of the rectilinear generating surfaces
decreases. This gives reason to consider material separation at the stage of the transition
period, which requires further theoretical and experimental research.

Key words: oblique helicoid, material particle, trajectory of motion

Introduction. The problem of the theory of the movement of a particle on a helical
surface is currently solved in a sufficiently complete and generalized form [1] . Its solution
was determined by the requests of practice in the design of spiral separators. Despite the

fact that such separators are passive working bodies and do not require energy to drive
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them, they also have disadvantages. This is relatively low performance and low resolution
(a small difference in the trajectories of particles with different physical and mechanical
properties) [2] . Modeling the motion of a material particle on helical surfaces and its
investigation by modern methods of numerical integration and visualization makes it
possible to obtain a real picture of motion in the absence of full-scale models of such
surfaces. This makes it possible to search for helical surfaces to improve their operational
characteristics.

Analysis of recent research and publications. The movement of a material particle
along an obligue (unfolding) helicoid is considered in the works of Prof. M.l. Akimova [1]
and Prof. P. M. Zaiki [3]. M.l. Sysoeva gave a generalized solution to the problem of
particle movement along a helical surface of constant pitch, the axial section of which is
an arbitrary curve [4]. As a special case, he considered an expanding helicoid, as well as
an oblique helicoid (a surface whose axial section is a straight line inclined at a certain
angle to the horizontal plane). All the listed problems are solved in the cylindrical
coordinate system. Academician P.M. Vasilenko indicated the possibility of solving
similar problems in the system of the accompanying trihedron of the particle's trajectory
(the so-called natural coordinate system). In paper [5], in the natural coordinate system,
the problem of the movement of a material particle along an unexpanded helical surface
with a horizontal arrangement of rectilinear generators (helical conoid or auger) was
solved, and in paper [6] — along an expanded helicoid formed by a set of rectilinear
generators tangent to the helical line

The purpose of the study - is to reveal the regularities of the movement of a material
particle along an oblique helicoid depending on the structural parameters of the surface.

Materials and methods of research. There are two structural parameters of an
oblique helicoid (Fig. 1, a) - step h and the angle g of inclination of the rectilinear
generating surfaces to the horizontal plane. The previously mentioned surfaces (screw
conoid and expanding helicoid) each have one design parameter. In a helical conoid (Fig.
1, b) /=0, so there remains one parameter - the step h , and in a spreading helicoid, the

angle Ais equal to the angle of elevation of the original helical line, that is, there is a

certain dependence between h and g [6]. Thus, there are more opportunities to influence
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the nature of the movement of a particle along an oblique helicoid with the help of these
parameters in comparison with the named helical surfaces. In general, a particle cannot
move along a helical conoid for a long time. It first accelerates, moving away from the
axis of the conoid, then slows down and finally stops [5]. This is explained by the fact that
as it moves away from the axis of the conoid, the angle of inclination of the trajectory to
the horizontal plane decreases and the moment comes when the particle can no longer
overcome the force of friction. It is obvious that at small (close to zero) values of the

angle, £ such motion of the particle should also be characteristic of an oblique helicoid.

F—-—" &

a b c

Fig. 1. Linear surfaces (only the frontal projection is shown), built according to
equations (2):
a— oblique helicoid (b =0; =0 ); b — helical conoid (b =0; f=0);
c—cone(b=0; 5=0)

Results of the studies and their discussion. To find the trajectory of the movement

of the particle along the surface and its speed v , we project the basic equation of the
dynamics of the point ma=F,, where m is the mass of the point (particle), , a- the
acceleration given to it by the force of acceleration F =mg of the particle (g =9.81 m/s ?),

on the axis of the accompanying of the Darboux trihedron of the trajectory. The Darboux
trihedron is a moving coordinate system, the unit vertices of which are attached to the

surface and located in space as follows. We take a point on the trajectory of the particle
and draw a plane tangent to the surface through it. In this plane, one ortho T coincides
with the direction of movement, that is, it is tangent to the trajectory, and the second P is

perpendicular to T . The third ort N perpendicular to the first two and is normal to the
surface. The main equation of the dynamics of a point in the projections onto the orthos of
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the accompanying Darbou trihedron is reduced to a system of differential equations (the
detailed derivation of these equations is shown in the work [6]):

v% =gcosy — f(gcoswm + vk );

1)

v’k = gcosg,
where f is the coefficient of friction; s is the length of the arc of the trajectory on the

surface; v, ¢, o - the angles between the particle weight vector and each of the vertices of

the trihedron 'F, . P, N the Darboux trihedron, respectively; k ,and k 4are the normal and
geodesic curvature of the trajectory, respectively. m is not included in system (1), since
the equations were reduced to it. System (1) describes the movement of a material particle
on the surface in the general case, while the angles w, ¢, @, speed v, geodesic k 4 and
normal k , curvature of the trajectory are functions of its arc s or another parameter that
defines the curve on the surface.

Let the oblique helicoid be given by the parametric equations [3]:

X = pcosq; Y = psina; Z=ba+ p-tgp, (2)
where b = h /27 - helical parameter of the surface — a constant value; p and a- independent
variable surfaces defining a point on an oblique helicoid - the distance from the axis of the
helicoid to the point and the angle of rotation around the axis, respectively.

If the independent variables p are « connected by a certain dependence, then a line
will be given on the surface (2). In order for this line to be the trajectory of the particle's
motion, it is necessary to find such a relationship between p and « that the conditions of
system (1) are fulfilled.

The normal curvature k ,, of the trajectory included in system (1) is determined by the
coefficients of the first and second quadratic forms, and the geodesic k 4 — by the
coefficients of only the first quadratic surface form. Let's find the coefficients of the first

quadratic form of the surface (2). Partial derivatives and coefficients G , F , E will be:
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The grid of coordinate lines of the surface ( 2 ) consists of two families: one family is
rectilinear generating lines, the other is helical lines. This grid is not orthogonal because
the mean F coefficient is not zero. For further work, let's simplify the first quadratic form,
moving to an orthogonal grid. To do this, we will leave the family of rectilinear generators
unchanged and find a family of orthogonal trajectories to it. In this case, it is much easier
to find the expression of the geodesic curvature of the trajectory, and the second quadratic
form of the surface is also simplified.

To find orthogonal trajectories to the family of rectilinear generators, it is necessary
to solve the differential equation:

Edp + Fda =0. 4)

By substituting the values of the corresponding coefficients from (3) into (4), after
solving, we obtain:

o =U—basin gcos g, (5)
where u is the integration constant. By assigning a specific value to the constant u and
substituting (5) into (2), we obtain a line perpendicular to the rectilinear generators of the
oblique helicoid. Since there can be many such values and each of them will have its own
line, we take u as a new independent variable instead of p. Thus, after substituting (5) into
(2), we obtain the equation of an oblique helicoid, referred to an orthogonal grid of
coordinate lines:

X =ucosa —basin fcos fcosa;
Y =usina —basin fcos gsin «; (6)
Z=u-tgB+bacos’ .
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Finally, so that the parameter u is not proportional to the length of the rectilinear
generator, but equal to it, the directional vector of the generator must be normalized, that
IS, to go to the directional cosines. To do this, we find the module of the vector, the
components of which are the expressions in equations (6) for the variable u. Having
obtained the square root of the sum of their squares, we obtain: 1 / cosg. Dividing each
component by the found expression, we obtain direction cosines and equation (6) takes the
final form:
X =c0s f(u—basin B)cosa;
Y =cos S(u—beasin g)sin a; (7)
Z =ba +sin f(u—basin ).
To find the length of a line on a surface and its geodesic and normal curvatures, it is
necessary to have expressions of the first and second quadratic forms. Let's find the first,

second and mixed partial derivatives of equations (7):

X =—cos B[bsin Bcosa + (U —basin B)sin ] X, =cos fcosa;

Y =—cosplbsin #sina — (U —basin g)cosa; Y, =cos Asin a;

Z, =hcos’ j3; Z, =sin f;
X =cos B[2bsin Bsin o — (U —basin B)cosal X,, =0;
Y =—cos fB[2bsin Bcosa + (U —basin B)sin Y, =0; (8)
Z,  =0; Z, =0;

X ~=-—c0sfsin a; Y, =cos cosa; Z =0.

The coefficients G, F, E of the first quadratic form will be:
G=X2+Y2+Z?%=cos? Bb? + (u—basin B)] ©)
F=X_X,+YY +Z2,7Z =0; E=X’+Y/+Z2=1.

The coefficients N, L , M of the second quadratic form will be:
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Let's find the first and second quadratic forms of the surface (7) and their ratio - the
normal curvature:
| =ds? = Edu® + 2Fduda + Gde? = du? + cos? Blb® + (u —basin )?|de?;  (11)
2bdude —sin B[2b? + (U —besin B)? [da?
\Jb? + (u—basin g)*
1 {2bduder —sin B[2b% + (u —basin B) [da? fcos B

K =— = .
"1 {du? +cos? B[b? + (U —basin B) Jda? i /b? + (U —basin B)? 39

Il = Ldu® + 2Mduda + Nda? = cos B - (12)

In order for the surface (7) to have a given line, it is necessary to establish a certain
relationship between the variables u and . We will consider the variable u as a function of
the variable «: u= u(a) . Then the first quadratic form (11), which is a linear element of

the surface and the normal curvature k , (13) will be written:

da
{2bu' —sin ,B[sz + (u—basin ﬂ)z]}cosﬂ
{u”? +cos? Blb? + (u—basin B)? [l\/b? + (u—basin B)*

( ds ) —u" + cos? ,B[bz + (Uu—basin ,3)2]; (14)

K, = 15)

where U'is the derivative of the variable u with respect to the parameter «. The geodesic
curvature of a line on a surface refers to the internal properties of the surface and can be
determined through the coefficients of the first quadratic form. For a surface with a

coefficient E=1, the geodesic curvature can be found using the formula [7]:
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kez \/6 5 (urrar CZU —EGUCK3 1G urarz Gu'za'J (16)
(02 +Ga?)? 2 2G G
where G ,, G , - partial derivatives of the coefficient G according to the corresponding
parameter:
G, =2cos’ f(u—basin 8); G, =—2bcos® Bsin B(u—basin ). (17)

Formula (16) implies that the line on the surface is given by the dependence between
the variables u and « through the third parameter t : u=u(t); o= «(t) . We will assume that
the dependence between the parameters u and « is given directly in the form u=u(«) ,
therefore =1 , a”=0 . Let's substitute these values, as well as expressions (17) and
coefficient G from (9) into (16). We will get:

k. =cosfx
><[ +(u—basin B)? ] [ "—cos’ S(u—basin ,6’)]+u (u—basin B)(bsin S — 2u) (18)
" +cos® Blb? + (u—basin B)* |7 Jb” + (U —basin B)’

To substitute in system (1), we have to find expressions for the angles v, ¢, o, each
of which is formed by the direction of the weight force mg and one of the orthos of the
Darboux trihedron. Since the direction of gravity coincides with the OZ axis fixed

coordinate system , then the specified angles will be defined as the angles between the

direction of the OZ axis and the corresponding ortho: (for y~ ort T ; for ¢- ort P; for o~
ort N'). The weight force vector { 0, 0, 1 } is directed downward parallel to the OZ axis ,
while we will assume that the OZ axis itself is also directed downward (this corresponds to
the nature of the movement, since the «Z coordinate of the trajectory increases with the
increase of the parameter, and at the same time the particle moves downward). In this case,
the cosine of the corresponding angle will be the direction cosine of the corresponding
orthogonal to the OZ axis , that is, the projection of this orthogonal onto the OZ axis .

Let's find an expression for the cosine of the angle w. Projections of the tangent
vector to the trajectory on the axis of the fixed coordinate system are derivatives of

equations (7) with respect to the variable «:
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x' = cos S[(u’ - bsin g)cosa — (U —basin g)sin a;
y' =cos B[(u’ —bsin B)sin a + (U —basin g)cosa];  (19)
Z'=b+ (u'—Dbsin B)sin g.
From the projections (19), we find the expression for the cosine of the angle i/ :
z' b+ (u'—bsin g)sin g

cosy = — _
i JX24y?+2? Ju +cos? Bb* + (u—basin §)?]

(20)

To determine the angle, » we find the direction of the normal to the surface in
projections on the axis of the fixed coordinate system OXYZ . Since the normal to the
surface is perpendicular to the vectors tangent to the coordinate lines, it can be found from

the vector product of these vectors:

X Y Z N, =YZ,-Y,Z,;
N=[X, VY, Z] 3BIIKH N, =-X,Z,+X,Z,; (21)
Xa Ya Za NZ = XUY(Z B XD!YU'

Substituting the partial derivatives from (8) into (21), we obtain the coordinates of the
vector directed along the normal to the surface:
N, = cos B[bsin a —sin (U —basin B)cosa;
N, =cos Blbcosa +sin B(u —basin f)sinal;  (22)
Z, =(u—basin B)cos® B.
Using the coordinates (22), we find the expression for the cosine of the angle w:
N _ (u=Dbasin B)cos g

COSw = :

- . 23
JNZ+N2+N2 \b? + (u—basin B)’ ()

Finally, to find out the expression for the cosine of the angle ¢, it is necessary to
know the coordinates of the vector P. Since it is perpendicular to the two vectors N and

T, then its coordinates will be determined from the vector product of the specified vectors:

X Y Z P=YyN,-2N,;
P=|x y 7| seimn P =—xN,+ZN_;  (24)
N, N, N, P =XN,—yN,.

Substituting expressions (19) and (22) into (24), we obtain the coordinates of the
vector directed along the centroid P:
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P = cosﬂ{Au’sin a+ [A2 cos’ B +b(bcos® 8 +u'sin ,B)]cow};
P, = cosﬂ{— Au’cosa + [A2 cos’ B +b(bcos® S+ u’'sin ,B)]sin a}; (25)
P, =—|bB - A’sin g]cos? 8, e A=u-—basin g, B=u'—bsing.
By projections (25), we find the expression for the cosine of the angle ¢:

P
COSQ = z —
Y JP? + P’ +P’
o (bB — A%sin B)cos S
JAZ (U + 2b%cos? 8) + A cos® B +b?(bcos? B +u'sin B)? + (bBcos )2 '

(26)

Now we have all the expressions included in the system (1) in the function of one
variable «. We substitute in (1) the expression ds from (14), the expressions for the
curvatures k, from (15) and k 4 from (18), and the expressions for the cosines of the angles
from (20), (23), and (26). After simplifications, let's write the system in a form convenient
for integration in the MatLab environment using the Simulink dynamic systems modeling

package :

Au'(2u’ —Dbsin g)
A? +b’ -

B g(bB — A’sin p’)[u'2 +(A? +b*)cos? /3]% _
v A% +b2 /A2 (U'? +2b% cos? B) + A* cos® B+bZ(bcos? B+u'sin B)? +(bBcos B)°
cos B y 2bu’ - (2b* + A*)sin 8 +gA\/u’2 T (AT1bi)cos 4 |,

VA2 +b? | Ju'? + (A +b?)cos’ BV

u” = Acos’ B+ (27)

v =3 (b+Bsin g) - f
\'

where A and B are expressions of variables, the designations of which are given in (25).
The system of differential equations (27) includes two unknown functions: u = u (&) and v
=V (). The integration of such a system by numerical methods is shown in [5] using the
appropriate model. It includes three integrators, each of which must be set to constant
integration. Three constant integrations set the initial conditions under which the
movement of the particle begins, namely: u, sets the position of the particle on the surface
at the initial moment of movement (distance u along the rectilinear generator); v, — initial

speed; ug- the direction of movement at the initial moment, which is specified in the
curvilinear coordinate system of the surface. We will consider the movement of particles

with initial velocities close to zero ( v, cannot be set equal to zero, since inadmissible
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division will occur in system (27)), so the direction of entry of the particle onto the surface
Is of no significant importance. When the initial speed is significantly greater than zero,
then its direction at the initial moment of movement at a given point on the surface plays a
significant role, as it affects the further trajectory of movement. This is shown in the work
[ 6 ] on the example of the movement of a particle along a unfolding helicoid.

If the initial velocity of the particle is zero or close to it, then its movement along the
surface begins in the direction of the line of greatest inclination. For an unfolding helicoid
and for other unfolding surfaces with the same inclination of the generators, this direction
coincides with the rectilinear generator surface at all its points, and for non-expanded
surfaces, to which the oblique helicoid belongs, the rectilinear generator is not the line of
greatest inclination [8]. Therefore, the initial trajectory of a particle along an oblique
helicoid will differ from a similar trajectory along an expanded helicoid. Integration of
system (27) showed that at small values of the angle, £ the movement of a particle along
an oblique helicoid is similar to the movement of a particle along a helical conoid [5], i.e.,
after acceleration, it slows down its movement and stops. The question arises: at what
minimum value of the angle B will the particle not stop? The answer to this question can
be given based on the following considerations. When b=0, equation (2) describes the
surface of the cone (Fig. 1, c). If the angle S of inclination of the elements of the cone to
the horizontal plane (which in this case is the angle of greatest inclination) is smaller than
the angle of friction of the particle, then its movement along the cone under the influence
of its own weight will become impossible. True, at b=0, that is, when the cone is
transformed into the surface of an oblique helicoid, the angle of the greatest inclination
increases, but as it moves away from the axis of the helicoid, it approaches the angle, that
S is, to the limit, after which movement becomes impossible. This confirmed the
integration of system (27) at an angle £ smaller than the friction angle. In this case the
movement of the particle is possible and stabilized provided that the particle hits the
surface of the helicoid at a certain distance p, from its axis. As the distance oy gecreases » the
particle accelerates more and more and the moment comes when it moves along the
helicoid away from its axis to such a distance that further movement becomes impossible.

The particle will not stop even at small values o, if the angle gis greater than the friction
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angle, i.e. p>arctg f . In this case, its motion stabilizes after a certain time [ 3 ] and it then

moves along a helical line at a constant distancep from the axis with a constant speed v .
Let's find the dependencies v and p from the structural parameters of the surface g

and b and the coefficient of friction f. The distance p can be found from the equations of

the surface (7) according to the Pythagorean theorem:

p=~X*+Y? =cos B(u—basin B). (28)
Solving (28) with respect to u, we find the expression u = u(«) and its derivatives:
u=—""+basin B, u’' =bsin g; u”=0. (29)
cos 3

Substituting expressions (29) and v’ = 0 into system (27), after simplifications we

obtain:

{VZ =—gp-t9p; 0

bcos B/ p? +b? = fp/p? + b cos? B.

The first expression of the system (30) was obtained in work [4] without the "minus”

sign (in our case, the OZ axis is directed downward, so the angle £ should be taken
negative). This expression allows you to find the speed of the particle after the
stabilization of the motion, when it moves at a constant distance p from the axis. The same

distance p can be found from the second equation of system (30):

(1— f2)cosB+~/(1— f?)cos? B+4f?

2f° (1)

p’> =b’cos

In work [3] Acad. P.M. Zaika also gives the expression of the distance pdepending on
the structural parameters of the surface and the coefficient of friction (p. 335, formula
(6.4.30), in which a slightly different notation of the structural parameters is adopted). It
differs from (31), but it is possible to show their identity, which was done by the authors
of this article.

If in (31) we consider the coefficient of friction f to be constant, then it can be seen
that the distance p depends on two design parameters: the angle £ and the value b .
Therefore, the same distance value p can be obtained from (31) with different
combinations of design parameters b and . If these parameters are considered variables,
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then equation (31) will clearly describe the surface, the horizontal sections of which will
be curves establishing the relationship between b and f for a certain value p. The
construction of surfaces in the form of graphs with the drawing of horizontal sections
(isolines) with the indication of the value of the function at the points of these isolines is
provided by modern software products. In fig. 2, according to equation (31), such a surface
Is constructed when the structural parameters b are changed and £ within the given limits
using the MatLab system.

g 45
grad.

40f---- P

36 o o e
30

L o o [ o SR A

20} S e
0.04 0.0

Fig. 2. Curved lines establishing the relationship between the design parameters b
and Bthe oblique helicoid for a given distance p:
f=0.3;b=0.01..0.1m; p=18°...45°

As can be seen from Fig. 2, the given value p=0.1 m corresponds to a helicoid with
different values of b and angle £. For the lower limit of the angle /3 taken =18 ° (since
arctg 0.3 = 16.7 ° and at smaller values of the angle f the particle can stop) screw
parameter b =0.0314 m (the exact value is found by equation (31)). For the upper limit
=45 ° corresponds to the value b =0.04095 m. In the first case, the step is h =2 zb =2
3.14 -0.0314=0.1973 m , in the second - h =2 -3.14 0.04095=0.2576 m . For other
combinations of b and g, which provide p=0.1 m , the step will be within the specified
limits, that is, within 20-26 cm . If we are talking about the separation of agricultural
materials, then the question of choosing the value arises p. Its value depends on the size of
the separating surface (diameter and pitch of the helicoid), as well as the speed of

movement of particles and their dispersion on the surface at different coefficients of
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friction. For the established motion, these parameters can be determined by formulas (30)
(first expression) and (31). If there is a question about the moment of stabilization of

motion, then to answer it you need to integrate the system of differential equations (27).

o L redsm
DAt
Pos=0,02 M O
1080
Rl
01}
04 215 :
0.1 0 01
B
o8 2
v.m FPo=0.02 M v.m Po=0,15M DAL
06 156 01 3
0.4 1
Po=0.15 M ol
006 -1
0.2 05
Fo=0.02 M [/ | SRR S
o ) ) o 0 T BAB oo
0 5 10 15 20 [+] 5 10 16 20 0.1 L] 0.1
d e f

Fig. 3. Graphical illustrations for the integration of the system of differential
equations (27) of the motion of a particle at f=0.3and v, <0 :
a trajectories of particle movement at p, = 0.02 m and p, = 0.15 m along an oblique
helicoid with design parameters b = 0.0314 and =18 °;
b trajectories of particle movement at p, = 0.02 m and p, = 0.15 m along an oblique
helicoid with design parameters b = 0.04095 and = 45 °;
¢ horizontal projections of particle movement along an oblique helicoid with structural
parameters b =0.0314 and =18 °;
d the graph of the change in the speed of particle movement v = v ( &) with the structural
parameters of the helicoid b = 0.0314 and =18 °;
e the graph of the change in the speed of particle movement v = v («) with the design

parameters of the helicoid b =0.04095 and =45 °;
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f horizontal projections of particle movement along an oblique helicoid with design parameters
b =0.04095 and =45 °

In fig. 3 shows the results of system integration (27) with the help of graphs, and Fig.
3a and 3b, the movement trajectory is superimposed on the surface image. Initial
conditions were taken for p=0.1 m for the previously mentioned combinations of design
parameters b and . The movement of the particle started at different distances from the
axis of the helicoid and stabilized after approximately two and a half turns in both cases,
which corresponds to a rotation angle of 15 rad on the velocity graphs (Fig. 3d and 3e) a~.
It can be seen from the same graphs that the velocities are approaching constant values, the

values of which can be more accurately calculated by the first expression of system (30).
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Fig. 4. Horizontal projections of particle motion trajectories with different friction
coefficients (above) and their corresponding dependences p= o z ) (below) for a

helicoid with the following design parameters:
a- Au003d45°; b =0.04095m; b-Au003d18°%;b=0.0314m; c-Au003d10°;
b=0,1m
Let 's find out how the particles are distributed on the surface of the oblique helicoid
if the friction coefficients are different. In fig. 4 above shows horizontal projections of the
movement of particles with different coefficients of friction, and below — graphs of

distance dependenciesp from the height of descent z. In all cases, the movement of
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particles begins at a distance of p=0.02 m. In fig. 4,a and 4,b show the previously
considered cases at f=45 ° and p=18 ° respectively, and in fig. 4, in — at f=10 ° .
Analyzing figures 4a and 4b, it can be concluded that after stabilization of motion,
particles with different friction coefficients come out at approximately the same distance
from the axis of the helicoid. However, as the angle decreases, £ their movement in the
transition period differs in that the amplitude of the fluctuations of the distance p from the
axis of the helicoid increases. At f=10 ° (Fig. 4,c), the particle with the friction coefficient
f =0.6 accelerated, and then stopped at a distance of p=0.2 m , which was mentioned
earlier.

The analysis of the figures above shows that at small angles, g it is during the
transition period (before the stabilization of motion) that the trajectories of particles with
different friction coefficients differ significantly from each other, i.e., in this period, the
resolution of the surface is quite large. Therefore, it is legitimate to consider the issue of
material separation at the stage of the transition period, but this requires further theoretical
research and experimental tests.

In conclusion, we note that conducting such research has become possible in modern
conditions, when existing software products allow not only to integrate systems of
differential equations by numerical methods, but also to perform the second no less
important stage - to visualize the obtained results.

Conclusions. Theoretical studies have shown that the movement of a material
particle with a known coefficient of friction on the surface of an oblique heclicoid can be
ensured at a given distance from its axis by combinations of structural parameters of the
surface. At the same time, the resolution of the surface during the separation of particles
with different friction coefficients practically does not change. However, in the transition
period (before the stabilization of the motion), there is a significant difference in the
trajectories of particle motion, which increases as the angle of inclination of the rectilinear
generating surfaces decreases. This gives reason to consider material separation at the

stage of the transition period, which requires further theoretical and experimental research.
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JOCJIJIDKEHHS PYXY MATEPIAJIBHOI YACTHHKH 11O IMTOBEPXHI
KOCOT'O I'EJIKOIJA IIJ JIEI0 CUJIU BJIACHOI BAT'
C.®@. Ilununaka, A. B. Hecgioomin

AHoOTaWiA. 3adaya, AKa ONUCYE PYX YACMUHKU NO 26UHMOBIL NOBEPXHI, 3HAUWIA
3aCMOCY8AHHs NpU NPOEKMYBAHHs CHIpATbHUX cenapamopie. Moodenwosanus pyxy
MamepianbHoi YACMUHKU NO 28UHMOBUX NOBEPXHAX 1 1020 OO0CHIONCEHHS CYYACHUMU
Memooamu YuceibHo20 iHme2py8anHs i 8i3yanizayii 0ae MONCIUBICIND 00ePHCAMU PeanlbHy
KapmuHy pyxy 3a GiOCYMHOCMI HAMYPHUX MoOeneli maxkux nosepxousv. ILle oae
MOJCIUBICMb  BeCMU  NOULYK 2BUHMOBUX NOBEPXOHb HA NpeomMem NOKPAWeHHs ix
EKCNLYyAmayitiHuxX Xapakmepucmux.

Memoro 0Oocnioxcenns 0y10 B8CMAHOBNEHHS 3AKOHOMIPHOCMI DPYX)y MaAmepiaibHoOi
YACMUHKU NO KOCOM) 2eliKoidy 6 3aneiCHOCmi 6i0 KOHCMPYKMUGHUX Napamempie
NOBEpPXHI.

Koncmpyxmusnux napamempie y xocoeo eenikoioa oéa — kpok h i kym B naxuny
NPAMONIHIUHUX MBIPHUX NOBEPXHI 00 20PU3OHMANbHOI NIOWUHU. 3a O0NOMO20H0 YUX
napamempia € Oinbule MONCIUBOCHEN BNIUBAMU HA XAPAKMeED PYXY YACTMUHKU NO KOCOMY
2eJliK0I0Y NOPIGHAHO 3 2BUHMOBUM KOHOIOOM I PO32OPIMHUM 2€IKOIOOM.

byno cknadeno oupepenyianvhi pisHanHs pyxy mamepianbHoi YACMUHKU NO NOBEPXHI
Kocoeo eenikoioa nio0 0i€to cunu 61acHoi eacu. PieHAHHA pO036 a3aHI YUCEeTbHUMU
Memooamu. 3pobneno 8i3yanizayilo 00epICcanux pe3yibmanmis

Bcmanoeneno, wo pyx mamepianvrnoi yacmunku i3 i00Mum Koe@iyicHmom mepms
1O NOBEPXHI KOCO20 2eNiKoioa MOXMCHA 3abe3neyumu HA 3a0aHiil 8i0CMaHi 8i0 1020 OCi
KOMOIHAYIAMU KOHCIMPYKMUBHUX napamempie nosepxti. Ilpu ybomy po3oinbHa 30amuicms
NOBEepXHI Npu cenapayii YacMuHOK 13 pI3HUMU KoeiyicHmamu mepms NPAKMUYHO He
smintoemvcsi. OOHax 6 nepexionutl nepiod (0o cmabinizayii pyxy) cnocmepieaemvcs
3HAYHA PIZHUYA Y MPAEKMOPIAX PYXY YACMUHOK, AKA 3POCMA€E NO MIpi 3MEHUWeEeHHA Kyma
HAXULYy NPAMOIHIUHUX MEIPpHUX noeepxui. Ile Oae niocmasu poszensioamu cenapayiro
mamepiany Ha emani nepexiono2o nepiody, ujo nompedye nooarvbiux meopemuyHux i
eKCNepUMEHMANbHUX OOCAIONCEHD.

Kuarwo4oBi ciioBa: xocuil 2enikoio, mamepianvsHa 4acmuHKa, MpacKmopisa pyxy
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