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Abstract. Cylindrical surfaces as working bodies of agricultural machines have quite
wide application.

The motion of a material particle on cylindrical surfaces is considered in the works
of academicians of the Ukrainian Academy of SciencesP. M. Vasylenko and P. M. Zaika.
However, P. M. Vasylenko failed to integrate the differential equations of motion and he
considers approximate solutions. A similar problem was solved by P. M. Zaika,
considering the motion of a particle on the inner surface of an inclined cylinder rotating
around its own axis.

The purpose of the study is to find the kinematic parameters of the motion of a
material particle on the inner surface of a stationary inclined cylinder under the action of
its own weight under different initial conditions.

The article investigates the motion of a material particle on the inner surface of an
inclined cylinder under the action of its own weight. Cases are considered when the
particle moves accelerated, decelerated and at a constant speed. The system of differential
equations is solved by numerical methods. The results were visualized.

It was established that the motion of a material particlealong the inner surface of an
inclined cylinder under the action of its own weight in the presence of friction can be
divided into three cases: 1) the angle of inclination of the generating cylinder to the
horizon is greater than the angle of friction; 2) the angle of inclination of the generating
cylinder to the horizon is equal to the angle of friction; 3) the angle of inclination of the
generating cylinder to the horizon is less than the angle of friction. If we exclude the
rectilinear motion along the lower generating cylinder, then all three cases are
characterized by oscillatory motion, which over time acquires certainsigns of stability, in
particular, by decreasingthe amplitude. In this case, in the first case, the particle velocity
Increases over time, in the second - it stabilizes and becomes constant, in the third - it
decreases until the particle stops completely. In the absence of friction, in all three cases,
the oscillations will continue indefinitely with an increase in their period.

Key words: material particle, cylinder, equation of particle motion, force of its own
weight

Topicality. Cylindrical surfaces as working bodies of agricultural machines have
quite wide application. Although they mainly perform rotational motion during the
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working process, the study of the motion of a material particle on a stationary surface is
interesting from a cognitive point of view.

Analysis of recent research and publications. The motion of a material particle on
cylindrical surfaces was considered in the works of academicians of the Ukrainian
Academy of Sciences P.M. Vasylenko [1] and P.M. Zaika [2]. When studying the motion
of a particle on the surface of an inclined stationary cylinder, P.M. Vasylenko considered
the so-called inertial motion, that is, motion in which the weight of the particle is not taken
into account. In this case, the particle would move along a geodesic curve, which for a
cylinder is a helical line. In real conditions, the weight of the particle cannot be ignored,
although it is quite possible to achieve motion whose trajectory is close to the geodesic
line: for this, it is necessary to give the particle a sufficiently high speed [3]. Taking into
account the weight of the particle, P.M. Vasylenko again simplifies the problem by
neglecting the friction force. However, in this case, he is unable to integrate the
differential equations of motion and he considers approximate solutions [ 1, p. 232-234].
Later, with the advent of computing technology and the possibility of numerical
integration, a similar problem was solved by P.M. Zaika [2] (in the indicated work, the
motion of a particle along the inner surface of an inclined cylinder rotating around its own
axis was considered).

The purpose of the study is to find the kinematic parameters of the motion of a
material particle along the inner surface of a stationary inclined cylinder under the action
of its own weight under different initial conditions.

Materials and methods of research. Parametric equations of a cylinder with a

vertical axis, and also after rotating it by an angle & from the vertical position, we write

accordingly:
X =Rcosq; X =Rcosecosa + usin g;
Y =Rsing; Y =Rsing; (1)
Z=u Z =—Rsin ecosa + ucose,

where R is the radius of the cylinder base; and u — the angle of rotation and the length of
the cylinder’s generator — the coordinates of a point on its surface — are variable

parameters.
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At £=0, equation (1) of an inclined cylinder (formulas on the right) becomes the equation
of a vertical cylinder (formulas on the left).

Research results and their discussion. Consider the motion of a material particle
along an inclined cylinder under the action of its own weight. Suppose that the particle
moves along a certain curve on the surface (trajectory). At a certain point on the trajectory,
draw a plane u tangent to the surface (Fig. 1, a). In the vicinity of the point where the
particle is currently located, we can consider its motion along the surface as along the
tangent plane .. Therefore, we need to compose differential equations of motion, which in

vector form will be written as one equation:
mw = F, )

where m is the mass of the particle; W - particle acceleration; F - the resultant of the
applied forces, which will be the weight of the particle mg (g =9.81 m/s ?) and the friction

force.

Fig. 1. Graphic illustrations for compiling differential equations of motion of a
material particle along the inner surface of an inclined cylinder:

a — the tangent plane 4 to the cylinder and the normal plane zdrawn to the trajectory at a
certain point of it; b — decomposition of the acting forces in the normal plane 7 trajectories

The vector equation (2) can be written in projections on the axis of the fixed system
OXYZ, or on the axis of the moving system, which is somehow connected with the
trajectory of motion. For the moving system, we will take the so-called Darboux trihedron

of the trajectory, onto which we will project equation (2). It is formed as follows. In the
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tangent plane « (touching the cylinder along a straight line), which is one of its three faces,
we will draw a unit coordinate t tangent to the trajectory. The second coordinate P, which
is also in the plane 4, will be drawn perpendicular to t. The plane zpassing through the
coordinate P and perpendicular to t, is the second face of the trihedron and is called the
normal plane (Fig. 1, a). The third orthogonal N (normal to the surface) and the third face
of the trihedron in Fig. 1, a are not shown.

Let us write the basic equation (2) of the dynamics of a point in the projection onto
the ort t. Since the acceleration w is the derivative of the velocity v with respect to time t
(not to be confused with the orthogonal function t), then it can be written in the transition

from the variable t to the variable s — the length of the trajectory arc:
dv_dv ds dv, ds

dt ds dt ds a O

The force that causes the particle to move and gives it acceleration is the component
of the gravitational force, which in the projection onto the orthogonal plane tis written as
mg -cos ¥ where ¥is the angle between the orthogonal plane t and the vector of the
gravitational force mg (Fig. 1, a). Another force directed along the orthogonal plane

topposite to the direction of motion is the friction force fG , where f is the friction
coefficient, G is the pressure exerted by the particle on the surface. Therefore, equation (2)

in the projection onto the orthogonal plane t of the Darboux trinedron can be written as:
dv
mv—— =mg cosy — fG.
ds mg 4 4)

The pressure force G is directed along the normal N to the surface and is the sum of
two components: the gravity force in the projection onto the ort N ( mg -cos @, where @ is
the angle between the gravity vector and the normal to the surface N ) and the projection
of the centrifugal force onto the same ort. The centrifugal force vector mv ?k, where K is
the curvature of the trajectory at a given point, is directed along the main normaln
trajectory in the opposite direction side of its direction. Since the main normaln trajectory
and the normal N to the surface are in the normal plane 7, then we consider it without

distortion (Fig. 1, b), that is, we choose the direction of view on it from the orthogonal
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plane t; in this case, the orthogonal plane t is projected into a point, and the tangent plane

L 1s projected into a straight line. This same line will be tangent to the curve q - the line of

section of the cylinder by the normal plane = Between the main normaln and the normal
to N the cylinder surface there is an angle 6, which changes during the movement of the
particle and depends on its position on the trajectory, i.e. is a function of the length of the
arc of the trajectory s. Thus, the expression for the pressure force takes the form:

G =mg cos w + mv’k cosé. (5)

Let us write the basic equation of the dynamics of the point (2) in the projection on
the orth P. The orth Pis located in the plane zperpendicular to the direction of motion
and is the result of the intersection of this plane with the tangent plane 4 The component
of the centrifugal force mv 2k -sin @ tries to displace the particle in the direction transverse
to the trajectory up along the curve of the cross section q (Fig. 1,b). The particle is
displaced until it is balanced by the component of the gravitational force mg -cos ¢, where
¢ is the angle between the gravitational force vector and the orth P. Therefore, the
equation of motion in the projection on the orth P can be written:

mv°k sin @ = mg cos . (6)

Finally, N we essentially have the equation of motion of a particle in the projection
onto the ort. This is the pressure force (5), which is balanced by the surface reaction (this
equation is already included in equation (4), so the system will consist of two equations —
in the projectionsontothe ort t and P ). It should be noted that the equality of expression
(5) to zero indicates that at a given point of the trajectory there is no pressure on the
surface and the particle is detached from the surface.

Let us combine equations (4) and (6) into a system, making some simplifications.
First, the expressions k cos &= k , and k sin &= k , in differential geometry are called,
respectively, the normal and geodesic curvatures of a curve on a surface [4]. Secondly,
substituting expression (5) into equation (4) makes it possible to reduce it to the mass m.

The same applies to equation (6). Taking into account the above, the system of differential

equations of motion of a particle in projections onto the orth t and P the moving Darboux
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trinedron can be written (its derivation is considered in more detail in [5]):

vd—V: gcosy — f(gcosw + v’k );
ds ! (7)
v’k = gcose.

Theangles v, ¢, o, velocity v, geodesic ky and normal k , curvature of the trajectory,
which are included in the system (7), are functions of the arc s of the trajectory or another
parameter that defines the curve on the surface. If the surface of an inclined cylinder is
given by equations (1), in which « and u are independent variables, then solving the
system (7) means finding such a dependence between the variables « and u , so that at
each point of the curve that is formed on the surface with the found dependence, the
conditions of the system (7) are fulfilled.

Let us find expressions for the angles v, ¢, w, of the geodesic kg, normal k, of the
trajectory curvature and the arc differential ds , which are included in system (7). To find
the specified quantities, it is necessary to have partial derivatives and expressions of the
first and second quadratic forms of the surface of the inclined cylinder. The first, second

and mixed derivatives of equations (1) on the right will be:

X, =—-Rcosegsin a; X, =sin¢;
Y, =Rcosq; Y, =0;
Z, =Rsinecosq; Z, =Cosc¢;
X, =—Rcosecosa; X,.=0; (8)
Y =-Rsing; Y, =0;
Z_  =Rsingcosq; Z, =0;
X, =0 Y, =0; Z =0.

The coefficients G , F , E of the first quadratic form will be:
G=X2+Y?+Z2=R%
F=XX,+YY +Z2Z =0, E=X2+Y>+Z=1, 9)

The coefficients N , L , M of the second quadratic form will be:
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1 X(Z(Z YO!(Z ZO{O{
N=————|X, Y, Z/|=R; (10)
_ 2

NGE-F X Y Z

1 Xau Yau Zau 1 qu Yuu Zuu
M=—r—r—X, Y Z|=0 L=——=/X, Y, Z |=0.

2 u u u : 2 u u u
NVGE -F x Yy 7 NVGE -F x vy 7

a a a a a a

Let's find the first and second quadratic forms of the inclined cylinder and their ratio -

the normal curvature:

| =ds? = Edu? + 2Fdude + Gde? = du® + R*de?; (11)
Il = Ldu’® + 2Mdude + Nda> = Rda?; (12)
I Rda?
k =— = ) 13
" 1 du®+R*da? (13)

In order for a line to be given on the surface of an inclined cylinder, it is necessary to
establish a certain dependence between the variables u and «. Such a dependence can be
established through another quantity - the angle S between the straight-line generator of
the cylinder and the tangent to the trajectory. Since the grid of coordinate lines on the
surface is orthogonal, (F =0), then the element of the arc of the trajectory ds can be
considered as the hypotenuse of an elementary right-angled triangle (Fig. 2), the legs of
which are the elements of the lengths of the coordinate lines. This can be understood from
expression (11), if it is interpreted as the Pythagorean theorem. From the right-angled
triangle (Fig. 2) we have:

R-da

t =
95 =—4,

tgp 1
do=—-du, where =—|tgSdu.
a== a=—[t9p (14)

Fig. 2. To determine the angle f between the direction of particle motion and the
rectilinear generating surface
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Angleg in (14) we will consider as a function of the variable u: = g( u ).

Substituting de from (14) into (11), we obtain the expressions for the differential of the
arc and the normal curvature of the trajectory:

a2
ds=— U . k :stﬂ_ (15)

" cosp’ '

Let us find an expression for the geodesic curvature ky of the trajectory, which is
included in the system (7). The geodesic curvature of a line on a surface refers to the
internal properties of the surface and can be determined through the coefficients (9) of the
first quadratic form. For a ruled surface, which is the surface of an inclined cylinder, the
geodesic curvature of a line can be found by the formula [4]:

.G

’ (u’2 +Ga'

1 1G G
u”a'—a"u'——G al3_77au!a12_7uu!2a/’ 1
)%( 2 2 G G j (16)

where G ,, G, - partial derivatives of the coefficient G with respect to the corresponding

parameter. Since we took the parameter u as the independent variable, and o= o u)

according to (14), the derivatives included in expression (16) can be written:

G, =0, G, =0; u' =1, u" =0; a'=@; a"sz. (17)
R R cos” 3

Substituting (17) and (9) into (16) gives the expression for the geodesic curvature of
the trajectory:

k, =-p"cos (3. (18)
We have to find expressions for the angles v, ¢, o, included in system (7). Let us
write the parametric equations of the line on the surface of the cylinder, taking into

account the dependence o= o u) (14):

X = Rcosgcos(éj'tgﬁ : du] + usin &
y = R sin ijtgﬁ-du; (19)
R
: 1
z = —R sin 5cos(Ejtg,6’ : duj +ucose¢.

To find the angle ybetween the orthogonal tangent tand the vector of the force of
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gravity mg , we first find the direction of the vector t. To do this, we differentiate
equation (19) with respect to the independent variable u:

x' = —cos &gp sin[%jtgﬁ : du) + sin ¢&;
y' =tgpf cos(éj.tgﬂ : duj; (20)

: (1
z' = sin &tgpf sm(EJ‘tgﬁ : du) + cos €.

Since the vector of the weight force mg is parallel to the OZ axis of the fixed

coordinate system, the angle i is determined by the formula:

'
z

cosy = = sin & sin ,Bsin(é jtgﬂ : du) + cos g cos f.(21)

\/ )2 ) )2
x"+y" 4z
Theangle wis the angle between the vector of the force of gravity mg and the normal

to the surface N . The normal to the surface is found from the cross product of the vectors

tangent to the coordinate lines:

X Y Z N, =Y,Z, -Y,Z,:
N=[X, Y, Z| N, ==X, Z, + X, Z; (22)
X, Y, Z, N, = X_Y, - X,Y,.

Substituting the partial derivatives from (8) into (22), we obtain the coordinates of the
normal vector to the surface of the inclined cylinder:
N, = Rcos ecos ; N, = Rsin a; N. = —Rsin g£cos a. (23)
Let us find an expression for the angle @, taking into account the dependence o= o u
) from (14):
N,

: 1
CoOsS @ = = —sin gcos| — | tgpf - du]. (24)
JNZ+ N+ N? (R J

Finally, to find the expression for the angle ¢, you need to know the coordinates of

the vector P . Since it is perpendicular to the two vectors N and t, its coordinates will be

determined from the cross product of the specified vectors:
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X Y Zz P.=2N, -yN,;
P=|N, N, N,|, P,=-2zN,+xN,; (25)
X"y 7 P,=yN,—xN,.

After substituting the corresponding expressions (20) and (23) into (25), we find the

projections of the vector P on the axis of the fixed coordinate system:

P, = Rsm stgff + R cosesin(éjtgﬂ : duj;
P, = -R cos(ijtgﬁ : duj; (26)
R

P, = Rcos &tgff — R sin gsin(éjtgﬂ : duj.

Using the projections of vector P (26), we find an expression for the cosine of the
angle ¢:
P,
P2+ P+ P’

cos @ = = cos ¢sin f# — sin ecosﬁsm(éjtgﬁ-du].(ﬂ)

Now we have all the expressions included in system (7) in functions of one variable
u. Substitute into (7) the expression ds and k , from (15), k , from (18) and the expressions
for the cosines of the angles from (21), (24) and (27):

-

w'cos S = g{sin £sin ﬂsin(%jtgﬂ-duj+c035cosﬁ}—
, Sin’ : 1 _
—f{v R'B—gsmgcos(ﬁjtgﬂ-duﬂ,

—VvZp'cos B = g{cosé‘sin S —sin gcosﬁsin(%jtgﬂ : duﬂ.

(28)

N

Since system (28) is a system of integro-differential equations, we turn to a system of
differential equations by differentiating the last expression (14) twice:

o =%; o’ ='B—2, where
R Rcos® S (29)
Ra'

1 ]
——; Sinf=—.
V1+ R 2 V1+R2%a 2

! !

S =Ra ' cos’ f;  cosf =
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Let us substitute expressions (29) and the last expression (14) into system (28) and
reduce it to a form convenient for integration in the MatLab environment using the

Simulink dynamic systems modeling package:

v = 9 (Ra'sin esin a + cos ) -
v
Rva' :
—f| ————-=+1+R%"*sin gcomj;
(\/1+ R’a'? vV (30)

2 12

a" = 9(1+RR2a ) (sinesina —Ra'cose) .
v

Let us analyze the system of differential equations (30). If a material particle is forced
to move along the bottom of an inclined cylinder down along the lower straight-line
generator with some initial velocity v, , then the nature of the motion will obviously
depend on the angle of inclination of the cylinder axis ¢. If the inclination of the cylinder
to the horizon is less than the angle of friction, then it is obvious that the motion will be
slowed down, and if it is greater, it will be accelerated. Let us check the system (30) for
the case when the angle of inclination of the cylinder to the horizon is equal to the angular
friction. Taking into account that is sthe angle between the vertical direction and the axis
of the cylinder, we can write: f = ctg £. The motion along the bottom of the cylinder along
the straight-line generator corresponds to the angle value o=180 ° — const . Substituting
these two quantities into system (30) from the second equation we obtain the identity, and
the first gives: v’ =0, hence v = const. Thus, having given the particle an initial velocity
along the lower generator of the cylinder down, it will continue to move with a constant
velocity. The question arises: how will it move if the initial velocity is directed at a certain
angle to the generator and the movement does not begin from the lower generator? To
investigate such a movement, numerical integration of system (30) was applied using the
Simulink package. The calculations were carried out at R =0.25 m and the length of the
generators 4 m. The coefficient of friction was taken to be f =0.3, from which the angle
was determinede : &= arcctg (0,3)=73,3 °. For integration, three blocks were used —

integrators, the input of each of which was given constant integrations: the initial velocity
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V,, the position of a point on the surface of the cylinder at the initial moment of movement
(for all subsequent examples, the movement began from the extreme lateral generatrix at
a, =90 °) and the direction of movement at an angle 3, to the generatrix. The cylinder is
constructed according to equations (1), and for clarity, only its lower part is shown in the
form of a trough. In Fig. 3, the trajectories of the particle motion and the graphs of its
velocity change under different initial conditions are plotted. In Fig. 3, a, the trajectory of
the particle, the motion of which began with an initial velocity close to zero (the value of

the angle S in this case, it is not of significant importance).

020 -
Vv, 4 V.20

v, 2
e mic me

15 3 15

’ 2 10

05 1\,l 5 \

UM UM UM
04 3 2 1 0 04 3 -2 1 0 q4 -3 -2 -1 0
a b Cc

Fig. 3. Trajectory (top) and velocity graph (bottom) of a particle moving along the
surface of a cylinder inclined to the horizon at an angle equal to the angular friction:
a — the initial velocity of the particle is close to zero, angle /=45 °; b — initial particle
velocity v , =4 m/s, angle 8~90 °; ¢ — initial particle velocity v , =20 m/s, angle 3~90 °

From Fig. 3, a it is seen that the particle first accelerates, then its motion becomes
similar to the oscillatory one, which damps out and the rest of the way it moves along the
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lower generating cylinder with a constant speed close to 1 m/s. When the initial speed
increases, the particle also performs oscillatory motion (Fig. 3, b), but its stabilization
occurs somewhat later to a value slightly greater than 1 m/s. If the particle is given a
significant initial speed at an angle £ close to 90 °, it will make one full revolution, and
then it will move, as in the previous cases (Fig. 3, c). Studies have shown that as the angle
decreases, &the nature of the particle’'s motion becomes more and more similar to its
motion along the inner surface of a cylinder with a vertical axis [6], i.e. the number of full
revolutions of the particle, other things being equal, increases. Conversely, as the angle
increases, sthe number of complete revolutions decreases, the particle speed drops sharply,
and even with a significant initial speed, it makes only 1-2 complete revolutions around
the inner surface of the cylinder.

If the angle of inclination of the cylinder to the horizon is less than the angle of
friction, the particle, having traveled a certain distance, will stop (Fig. 4).

U, m

Fig. 4. Graphic illustrations of the movementof a particle along the inner surface ofa
cylinder when it is tilted to the horizon at an angle smaller than the friction angle (
£=85° B=0° v,=4 m/s, f=0.3):

a — trajectory of movement; b — velocity change graph

Finally, at an angle of inclination of the cylinder to the horizon greater than the
friction angle, the particle will move unevenly, maintaining a tendency to increase speed
and stabilize the motion without oscillations (Fig. 5). However, this does not apply to the
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motion in the absence of friction (Fig. 5, b), in which the oscillations will continue

indefinitely with an increase in their period.

Fig. 5. Trajectory (top) and velocity graph (bottom) of a particle moving along the
surface of a cylinder inclined to the horizon at an angle greater than the friction
angle ( =45 °):

a — the initial velocity of the particle is close to zero, angle 4=45 °, f =0.3; b — initial
particle velocity v , =10 m/s, angle <90 ° and different coefficients of friction

Conclusions and perspectives. The motion of a material particle along the inner
surface of an inclined cylinder under the action of its own weight in the presence of
friction can be divided into three cases: 1) the angle of inclination of the generating
cylinder to the horizon is greater than the angle of friction; 2) the angle of inclination of
the generating cylinder to the horizon is equal to the angle of friction; 3) the angle of
inclination of the generating cylinder to the horizon is less than the angle of friction. If we
exclude the rectilinear motion along the lower generating cylinder, then all three cases are
characterized by oscillatory motion, which over time acquires certain signs of stability, in
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particular, by decreasing the amplitude. In this case, in the first case, the particle velocity
Increases over time, in the second - it stabilizes and becomes constant, in the third - it
decreases until the particle stops completely. In the absence of friction, in all three cases,
the oscillations will continue indefinitely with an increase in their period.
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TOCJIKEHHSA PYXY MATEPIAJIBHOI YACTUHKM 11O BHY TPIIIHIN
INOBEPXHI CTAIHIOHAPHOI'O MIOXWJIOT'O HUAJITHAPA
C. @. ITununaxa, A. B. Hecgioomin

AHoOTaNisA. [[uninopuuni nosepxti ax poooui opeanu CiibCbKO20CNOOAPCHKUX MAULUH
Manoms 00CUmMb WUPOKe 3ACMOCYEAHHSL.

Pyx mamepianvnoi yacmunku no yuiiHOpUYHUX NOBEPXHAX PO3NAHYMO V NPAYsX
akaoemikie VAAH II. M. Bacunenxa i II. M. 3aixu. Ilpome npoinmeepysamu
oughepenyianvhi pieuanna pyxy I[1. M. Bacunenxy ne 60anocs i 8iH po3ensdae Habauxdceti
poss’asku. 1lodiony 3adauy pose’szaé I[1.M.3aika, pozensanyswiu pyx 4acmuHKu no
BHYMPIWHIU NOBEPXHI NOXUN020 YUNIHOPA, U0 00ePMAEMbCA HABKOJLO GLACHOL OCI.

Mema oOocniddcenns — 3HaUmMu KiHEMAMUYHI napamempu pyxy MamepiaibHOL
YACMUHKU NO 8HYMPIUWHIT NOBEPXHI CIMAYIOHAPHO20 NOXUTI020 YULIHOPA Nid Ji€r0 Culu
811ACHOI 8a2U 3a PIZHUX NOYAMKOBUX YMOB.

Y cmammi oocnidoceno pyx mamepianvHoi uacmuHKy N0 8HYMPIWHIN NOBEPXHI
HOXUN020 YUNIHOpa nio Oi€lo cuiu 61acHoi eazu. Pozenanymo eunaoku, Koau 4acmuHKka
PYXAEMbCSL  NPUCKOPEHO, CHOBIIbHEHO [ 13 nocmiunow weuokicmio. Cucmemy
oughepenyianvHux pieHaAHb PO38 SA3AHO YUCETLHUMU MEeMOoOamMu. 3pooieHo 8i3yanizayiro
00epHCAHUX Pe3)IbmAaAmia.

Bcmanoeneno, wo pyx mamepianoHoi yacmunKu no 6HYmpIiuHit NOGepXHi NOXUL020
YUNiHOpa nio Oi€r0 Cunu 61ACHOL 8azu 3a HASIBHOCMI MePmsa MONCHA PO3OLIUMU HA MPU
sunaoxku. 1) Kkym naxuny meipHux yuninopa 0o 2opu3oHmy Oinewull 810 Kyma mepms, 2)
KYM HAXU1y meipHux yuiiHopa 00 20pu30Hmy pieHull Kymogi mepms, 3) Kym HaXUiy
MBIPHUX YUNIHOPA 00 20PU30OHMY MeHwuld 6i0 Kyma mepmsa. Axwo euxmouumu
NPAMONIIHIUHUL PYX NO HUNCHIU MBIPHIU YUNiHOpa, mo Oasi 6CIX mpboX BUNAOKIE
Xapaxmepruil KOAUBANbHUL PYX, KU 3 4ACOM HAOY8AE NEGHUX O3HAK CMAOIIbHOCHI,
30Kpema, no 3MeHUleHHI0 Gequyunu amnaimyou. Ilpu yvomy y nepuiomy 6unaoxy
WBUOKICMb YACMUHKU 3 4ACOM pocme, Y OpY20MYy — cmabili3yemvpcs i cmae noCMilHow, y
MpemvboMy — 3MEHULYEMbCSL 00 NOBHOT 3YNUHKU YACTMUHKU. 3a 810CYMHOCMI mepms Y 6CixX
MPbOX BUNAOKAX KOIUBAHHSL OYOYMb NPOO0BIHCYBAMUCS HECKIHUEHHO 00820 NPU 3POCMAHHI
ix nepiooy.

Knro4woBi ciioBa: mamepianvna wacmunka, Yuainop, pi6HAHHA PyXy YACH UHKU,
Ccu1a 61acHol eazu
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