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Abstract. Cylindrical surfaces as working bodies of agricultural machines have quite 
wide application. 

The motion of a material particle on cylindrical surfaces is considered in the works 
of academicians of the Ukrainian Academy of Sciences P. M. Vasylenko and P. M. Zaika. 
However, P. M. Vasylenko failed to integrate the differential equations of motion and he 
considers approximate solutions. A similar problem was solved by P. M. Zaika, 
considering the motion of a particle on the inner surface of an inclined cylinder rotating 
around its own axis. 

The purpose of the study is to find the kinematic parameters of the motion of a 
material particle on the inner surface of a stationary inclined cylinder under the action of 

its own weight under different initial conditions. 
The article investigates the motion of a material particle on the inner surface of an 

inclined cylinder under the action of its own weight. Cases are considered when the 
particle moves accelerated, decelerated and at a constant speed. The system of differential 
equations is solved by numerical methods. The results were visualized. 

It was established that the motion of a material particle along the inner surface of an 
inclined cylinder under the action of its own weight in the presence of friction can be 
divided into three cases: 1) the angle of inclination of the generating cylinder to the 

horizon is greater than the angle of friction; 2) the angle of inclination of the generating 
cylinder to the horizon is equal to the angle of friction; 3) the angle of inclination of the 
generating cylinder to the horizon is less than the angle of friction. If we exclude the 
rectilinear motion along the lower generating cylinder, then all three cases are 
characterized by oscillatory motion, which over time acquires certain signs of stability, in 
particular, by decreasing the amplitude. In this case, in the first case, the particle velocity 
increases over time, in the second - it stabilizes and becomes constant, in the third - it 
decreases until the particle stops completely. In the absence of friction, in all three cases, 
the oscillations will continue indefinitely with an increase in their period. 

Key words: material particle, cylinder, equation of particle motion, force of its own 
weight 

 

Topicality. Cylindrical surfaces as working bodies of agricultural machines have 

quite wide application. Although they mainly perform rotational motion during the 

mailto:a.nesvidomin@gmail.com


"Енергетика і автоматика", №6, 2024 р.  

74 

working process, the study of the motion of a material particle on a stationary surface is 

interesting from a cognitive point of view. 

Analysis of recent research and publications. The motion of a material particle on 

cylindrical surfaces was considered in the works of academicians of the Ukrainian 

Academy of Sciences P.M. Vasylenko [1] and P.M. Zaika [2]. When studying the motion 

of a particle on the surface of an inclined stationary cylinder, P.M. Vasylenko considered 

the so-called inertial motion, that is, motion in which the weight of the particle is not taken 

into account. In this case, the particle would move along a geodesic curve, which for a 

cylinder is a helical line. In real conditions, the weight of the particle cannot be ignored, 

although it is quite possible to achieve motion whose trajectory is close to the geodesic 

line: for this, it is necessary to give the particle a sufficiently high speed [3]. Taking into 

account the weight of the particle, P.M. Vasylenko again simplifies the problem by 

neglecting the friction force. However, in this case, he is unable to integrate the 

differential equations of motion and he considers approximate solutions [ 1, p. 232-234]. 

Later, with the advent of computing technology and the possibility of numerical 

integration, a similar problem was solved by P.M. Zaika [2] (in the indicated work, the 

motion of a particle along the inner surface of an inclined cylinder rotating around its own 

axis was considered). 

The purpose of the study is to find the kinematic parameters of the motion of a 

material particle along the inner surface of a stationary inclined cylinder under the action 

of its own weight under different initial conditions. 

Materials and methods of research. Parametric equations of a cylinder with a 

vertical axis, and also after rotating it by an angle  from the vertical position, we write 

accordingly: 

 

,coscossin;

;sin;sin

;sincoscos;cos







uRZuZ

RYRY

uRXRX







   (1) 

where R is the radius of the cylinder base; and u – the angle of rotation and the length of 

the cylinder’s generator – the coordinates of a point on its surface – are variable 

parameters. 
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At =0, equation (1) of an inclined cylinder (formulas on the right) becomes the equation 

of a vertical cylinder (formulas on the left). 

Research results and their discussion. Consider the motion of a material particle 

along an inclined cylinder under the action of its own weight. Suppose that the particle 

moves along a certain curve on the surface (trajectory). At a certain point on the trajectory, 

draw a plane  tangent to the surface (Fig. 1, a). In the vicinity of the point where the 

particle is currently located, we can consider its motion along the surface as along the 

tangent plane . Therefore, we need to compose differential equations of motion, which in 

vector form will be written as one equation: 

      ,Fwm                 (2) 

where m is the mass of the particle;  W  - particle acceleration; F  - the resultant of the 

applied forces, which will be the weight of the particle mg (g =9.81 m/s 2) and the friction 

force. 

 

a                    b 

Fig. 1. Graphic illustrations for compiling differential equations of motion of a 
material particle along the inner surface of an inclined cylinder: 

a – the tangent plane  to the cylinder and the normal plane  drawn to the trajectory at a 

certain point of it; b – decomposition of the acting forces in the normal plane   trajectories 
 

The vector equation (2) can be written in projections on the axis of the fixed system 

OXYZ, or on the axis of the moving system, which is somehow connected with the 

trajectory of motion. For the moving system, we will take the so-called Darboux trihedron 

of the trajectory, onto which we will project equation (2). It is formed as follows. In the 
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tangent plane  (touching the cylinder along a straight line), which is one of its three faces, 

we will draw a unit coordinate t tangent to the trajectory. The second coordinate P , which 

is also in the plane , will be drawn perpendicular to t . The plane  passing through the 

coordinate P  and perpendicular to t , is the second face of the trihedron and is called the 

normal plane (Fig. 1, a). The third orthogonal N  (normal to the surface) and the third face 

of the trihedron in Fig. 1, a are not shown. 

Let us write the basic equation (2) of the dynamics of a point in the projection onto 

the ort t . Since the acceleration w is the derivative of the velocity v with respect to time t 

(not to be confused with the orthogonal function t ), then it can be written in the transition 

from the variable t to the variable s – the length of the trajectory arc: 

  .; v
dt

ds

ds

dv
v

dt

ds

ds

dv

dt

dv
   (3) 

The force that causes the particle to move and gives it acceleration is the component 

of the gravitational force, which in the projection onto the orthogonal plane t is written as 

mg cos , where  is the angle between the orthogonal plane t  and the vector of the 

gravitational force mg (Fig. 1, a). Another force directed along the orthogonal plane 

t opposite to the direction of motion is the friction force fG , where f is the friction 

coefficient, G is the pressure exerted by the particle on the surface. Therefore, equation (2) 

in the projection onto the orthogonal plane t  of the Darboux trihedron can be written as: 

     .cos fGmg
ds

dv
mv      (4) 

The pressure force G is directed along the normal N to the surface and is the sum of 

two components: the gravity force in the projection onto the ort N ( mg cos , where  is 

the angle between the gravity vector and the normal to the surface N ) and the projection 

of the centrifugal force onto the same ort. The centrifugal force vector mv 2 k, where k is 

the curvature of the trajectory at a given point, is directed along the main normal n  

trajectory in the opposite direction side of its direction. Since the main normaln  trajectory 

and the normal N to the surface are in the normal plane , then we consider it without 

distortion (Fig. 1, b), that is, we choose the direction of view on it from the orthogonal 
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plane t ; in this case, the orthogonal plane t is projected into a point, and the tangent plane 

 is projected into a straight line. This same line will be tangent to the curve q - the line of 

section of the cylinder by the normal plane . Between the main normaln  and the normal 

to N the cylinder surface there is an angle , which changes during the movement of the 

particle and depends on its position on the trajectory, i.e. is a function of the length of the 

arc of the trajectory s. Thus, the expression for the pressure force takes the form: 

   .coscos 2  kmvmgG           (5) 

Let us write the basic equation of the dynamics of the point (2) in the projection on 

the orth P . The orth P is located in the plane  perpendicular to the direction of motion 

and is the result of the intersection of this plane with the tangent plane . The component 

of the centrifugal force mv 2 k sin   tries to displace the particle in the direction transverse 

to the trajectory up along the curve of the cross section q (Fig. 1,b). The particle is 

displaced until it is balanced by the component of the gravitational force mg cos , where 

 is the angle between the gravitational force vector and the orth P . Therefore, the 

equation of motion in the projection on the orth P can be written: 

.cossin2  mgkmv             (6) 

Finally, N we essentially have the equation of motion of a particle in the projection 

onto the ort. This is the pressure force (5), which is balanced by the surface reaction (this 

equation is already included in equation (4), so the system will consist of two equations – 

in the projections onto the ort t   and P ). It should be noted that the equality of expression 

(5) to zero indicates that at a given point of the trajectory there is no pressure on the 

surface and the particle is detached from the surface. 

Let us combine equations (4) and (6) into a system, making some simplifications. 

First, the expressions k cos = k n and k sin = k r in differential geometry are called, 

respectively, the normal and geodesic curvatures of a curve on a surface [4]. Secondly, 

substituting expression (5) into equation (4) makes it possible to reduce it to the mass m. 

The same applies to equation (6). Taking into account the above, the system of differential 

equations of motion of a particle in projections onto the orth t  and P the moving Darboux 
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trihedron can be written (its derivation is considered in more detail in [5]): 

   




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





.cos

);cos(cos


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kvgfg
ds

dv
v

г

2

н

2

    (7) 

The angles , , , velocity v, geodesic kg  and normal k n curvature of the trajectory, 

which are included in the system (7), are functions of the arc s of the trajectory or another 

parameter that defines the curve on the surface. If the surface of an inclined cylinder is 

given by equations (1), in which  and u are independent variables, then solving the 

system (7) means finding such a dependence between the variables  and u , so that at 

each point of the curve that is formed on the surface with the found dependence, the 

conditions of the system (7) are fulfilled. 

Let us find expressions for the angles , , , of the geodesic kg, normal kn of the 

trajectory curvature and the arc differential ds , which are included in system (7). To find 

the specified quantities, it is necessary to have partial derivatives and expressions of the 

first and second quadratic forms of the surface of the inclined cylinder. The first, second 

and mixed derivatives of equations (1) on the right will be: 
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;0;sin 
uu

YRY 
  

;0;cossin 
uu

ZRZ 
  

.0;0;0 
uuu

ZYX
  

The coefficients G , F , E of the first quadratic form will be: 

;2222 RZYXG 
  

.1;0 222 
uuuuuu

ZYXEZZYYXXF
    (9) 

The coefficients N , L , M of the second quadratic form will be: 
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Let's find the first and second quadratic forms of the inclined cylinder and their ratio - 

the normal curvature: 

;2 222222  dRduGdFdudEdudsI             (11) 

;2 222  RdNdMdudLduII                 (12) 
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н

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In order for a line to be given on the surface of an inclined cylinder, it is necessary to 

establish a certain dependence between the variables u and . Such a dependence can be 

established through another quantity - the angle  between the straight-line generator of 

the cylinder and the tangent to the trajectory. Since the grid of coordinate lines on the 

surface is orthogonal, (F =0), then the element of the arc of the trajectory ds can be 

considered as the hypotenuse of an elementary right-angled triangle (Fig. 2), the legs of 

which are the elements of the lengths of the coordinate lines. This can be understood from 

expression (11), if it is interpreted as the Pythagorean theorem. From the right-angled 

triangle (Fig. 2) we have: 




 .tg
1

where,
tg

ortg du
R

du
R

d
du

dR






           (14) 

 

 

Fig. 2. To determine the angle  between the direction of particle motion and the 
rectilinear generating surface 
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Angle in (14) we will consider as a function of the variable u: = ( u ). 

Substituting d from (14) into (11), we obtain the expressions for the differential of the 

arc and the normal curvature of the trajectory: 

    .
sin

;
cos

2

R
k

du
ds

н




   (15) 

Let us find an expression for the geodesic curvature kg of the trajectory, which is 

included in the system (7). The geodesic curvature of a line on a surface refers to the 

internal properties of the surface and can be determined through the coefficients (9) of the 

first quadratic form. For a ruled surface, which is the surface of an inclined cylinder, the 

geodesic curvature of a line can be found by the formula [4]: 
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where G , G u - partial derivatives of the coefficient G with respect to the corresponding 

parameter. Since we took the parameter u as the independent variable, and = ( u ) 

according to (14), the derivatives included in expression (16) can be written: 

.
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RR
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Substituting (17) and (9) into (16) gives the expression for the geodesic curvature of 

the trajectory: 

     .cos  гk     (18) 

We have to find expressions for the angles , , , included in system (7). Let us 

write the parametric equations of the line on the surface of the cylinder, taking into 

account the dependence = ( u ) (14): 
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To find the angle between the orthogonal tangent t and the vector of the force of 
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gravity mg , we first find the direction of the vector t . To do this, we differentiate 

equation (19) with respect to the independent variable u: 
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Since the vector of the weight force mg is parallel to the OZ axis of the fixed 

coordinate system, the angle  is determined by the formula: 

.coscostgsinsinsincos  
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222
(21) 

The angle  is the angle between the vector of the force of gravity mg and the normal 

to the surface N . The normal to the surface is found from the cross product of the vectors 

tangent to the coordinate lines: 
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Substituting the partial derivatives from (8) into (22), we obtain the coordinates of the 

normal vector to the surface of the inclined cylinder: 

    .cossin;sin;coscos  RNRNRN zyx   (23) 

Let us find an expression for the angle , taking into account the dependence = ( u 

) from (14): 
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Finally, to find the expression for the angle , you need to know the coordinates of 

the vector P . Since it is perpendicular to the two vectors N and t , its coordinates will be 

determined from the cross product of the specified vectors: 
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After substituting the corresponding expressions (20) and (23) into (25), we find the 

projections of the vector P on the axis of the fixed coordinate system: 
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Using the projections of vector P (26), we find an expression for the cosine of the 

angle : 
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Now we have all the expressions included in system (7) in functions of one variable 

u. Substitute into (7) the expression ds and k n from (15), k g from (18) and the expressions 

for the cosines of the angles from (21), (24) and (27): 
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Since system (28) is a system of integro-differential equations, we turn to a system of 

differential equations by differentiating the last expression (14) twice: 
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Let us substitute expressions (29) and the last expression (14) into system (28) and 

reduce it to a form convenient for integration in the MatLab environment using the 

Simulink dynamic systems modeling package: 
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Let us analyze the system of differential equations (30). If a material particle is forced 

to move along the bottom of an inclined cylinder down along the lower straight-line 

generator with some initial velocity vo , then the nature of the motion will obviously 

depend on the angle of inclination of the cylinder axis . If the inclination of the cylinder 

to the horizon is less than the angle of friction, then it is obvious that the motion will be 

slowed down, and if it is greater, it will be accelerated. Let us check the system (30) for 

the case when the angle of inclination of the cylinder to the horizon is equal to the angular 

friction. Taking into account that is the angle between the vertical direction and the axis 

of the cylinder, we can write: f = ctg . The motion along the bottom of the cylinder along 

the straight-line generator corresponds to the angle value =180 0 – const . Substituting 

these two quantities into system (30) from the second equation we obtain the identity, and 

the first gives: 0v  , hence v = const. Thus, having given the particle an initial velocity 

along the lower generator of the cylinder down, it will continue to move with a constant 

velocity. The question arises: how will it move if the initial velocity is directed at a certain 

angle to the generator and the movement does not begin from the lower generator? To 

investigate such a movement, numerical integration of system (30) was applied using the 

Simulink package. The calculations were carried out at R =0.25 m and the length of the 

generators 4 m. The coefficient of friction was taken to be f =0.3, from which the angle 

was determined : = arcctg (0,3)=73,3 0 . For integration, three blocks were used – 

integrators, the input of each of which was given constant integrations: the initial velocity 
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vo , the position of a point on the surface of the cylinder at the initial moment of movement 

(for all subsequent examples, the movement began from the extreme lateral generatrix at 

o =90 0 ) and the direction of movement at an angle o to the generatrix. The cylinder is 

constructed according to equations (1), and for clarity, only its lower part is shown in the 

form of a trough. In Fig. 3, the trajectories of the particle motion and the graphs of its 

velocity change under different initial conditions are plotted. In Fig. 3, a, the trajectory of 

the particle, the motion of which began with an initial velocity close to zero (the value of 

the angle   in this case, it is not of significant importance). 

 

a             b               c 

Fig. 3. Trajectory (top) and velocity graph (bottom) of a particle moving along the 
surface of a cylinder inclined to the horizon at an angle equal to the angular friction: 

a – the initial velocity of the particle is close to zero, angle =45 0; b – initial particle 

velocity v o =4 m/s, angle 90 0; c – initial particle velocity v o =20 m/s, angle 90 0 

 

From Fig. 3, a it is seen that the particle first accelerates, then its motion becomes 

similar to the oscillatory one, which damps out and the rest of the way it moves along the 
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lower generating cylinder with a constant speed close to 1 m/s. When the initial speed 

increases, the particle also performs oscillatory motion (Fig. 3, b), but its stabilization 

occurs somewhat later to a value slightly greater than 1 m/s. If the particle is given a 

significant initial speed at an angle  close to 90 0 , it will make one full revolution, and 

then it will move, as in the previous cases (Fig. 3, c). Studies have shown that as the angle 

decreases, the nature of the particle's motion becomes more and more similar to its 

motion along the inner surface of a cylinder with a vertical axis [6], i.e. the number of full 

revolutions of the particle, other things being equal, increases. Conversely, as the angle 

increases, the number of complete revolutions decreases, the particle speed drops sharply, 

and even with a significant initial speed, it makes only 1-2 complete revolutions around 

the inner surface of the cylinder. 

If the angle of inclination of the cylinder to the horizon is less than the angle of 

friction, the particle, having traveled a certain distance, will stop (Fig. 4). 

 

 

a                  b 

Fig. 4. Graphic illustrations of the movement of a particle along the inner surface of a 
cylinder when it is tilted to the horizon at an angle smaller than the friction angle ( 

=85 0, =0 0, v o =4 m/s, f =0.3): 

a – trajectory of movement; b – velocity change graph 
 

Finally, at an angle of inclination of the cylinder to the horizon greater than the 

friction angle, the particle will move unevenly, maintaining a tendency to increase speed 

and stabilize the motion without oscillations (Fig. 5). However, this does not apply to the 
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motion in the absence of friction (Fig. 5, b), in which the oscillations will continue 

indefinitely with an increase in their period. 

 

 

a                 b 

Fig. 5. Trajectory (top) and velocity graph (bottom) of a particle moving along the 
surface of a cylinder inclined to the horizon at an angle greater than the friction 

angle ( =45 0): 

a – the initial velocity of the particle is close to zero, angle =45 0, f =0.3; b – initial 

particle velocity v o =10 m/s, angle 90 0 and different coefficients of friction 

 

Conclusions and perspectives. The motion of a material particle along the inner 

surface of an inclined cylinder under the action of its own weight in the presence of 

friction can be divided into three cases: 1) the angle of inclination of the generating 

cylinder to the horizon is greater than the angle of friction; 2) the angle of inclination of 

the generating cylinder to the horizon is equal to the angle of friction; 3) the angle of 

inclination of the generating cylinder to the horizon is less than the angle of friction. If we 

exclude the rectilinear motion along the lower generating cylinder, then all three cases are 

characterized by oscillatory motion, which over time acquires certain signs of stability, in 
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particular, by decreasing the amplitude. In this case, in the first case, the particle velocity 

increases over time, in the second - it stabilizes and becomes constant, in the third - it 

decreases until the particle stops completely. In the absence of friction, in all three cases, 

the oscillations will continue indefinitely with an increase in their period. 
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ДОСЛІДЖЕННЯ РУХУ МАТЕРІАЛЬНОЇ ЧАСТИНКИ ПО ВНУТРІШНІЙ 

ПОВЕРХНІ СТАЦІОНАРНОГО ПОХИЛОГО ЦИЛІНДРА 
С. Ф. Пилипака, А. В. Несвідомін 

 
Анотація. Циліндричні поверхні як робочі органи сільськогосподарських машин 

мають досить широке застосування.  
Рух матеріальної частинки по циліндричних поверхнях розглянуто у працях 

академіків УААН П. М. Василенка і П. М. Заїки. Проте проінтегрувати 
диференціальні рівняння руху П. М. Василенку не вдалося і він розглядає наближені  
розв’язки. Подібну задачу розв’язав П.М.Заїка, розглянувши рух частинки по 
внутрішній поверхні похилого циліндра, що обертається навколо власної осі.  

Мета дослідження – знайти кінематичні параметри руху матеріальної 
частинки по внутрішній поверхні стаціонарного похилого циліндра під дією сили 
власної ваги за різних початкових умов. 

У статті досліджено рух матеріальної частинки по внутрішній поверхні 

похилого циліндра під дією сили власної ваги. Розглянуто випадки, коли частинка 
рухається прискорено, сповільнено і із постійною швидкістю. Систему 
диференціальних рівнянь розв’язано чисельними методами. Зроблено візуалізацію 
одержаних результатів. 

Встановлено, що рух матеріальної частинки по внутрішній поверхні похилого 
циліндра під дією сили власної ваги за наявності тертя можна розділити на три 
випадки: 1) кут нахилу твірних циліндра до горизонту більший від кута тертя; 2) 
кут нахилу твірних циліндра до горизонту рівний кутові тертя;  3) кут нахилу 

твірних циліндра до горизонту менший від кута тертя. Якщо виключити 
прямолінійний рух по нижній твірній циліндра, то для всіх трьох випадків 
характерний коливальний рух, який з часом набуває певних ознак стабільності, 
зокрема, по зменшенню величини амплітуди. При цьому у першому випадку 
швидкість частинки з часом росте, у другому – стабілізується і стає постійною, у 
третьому – зменшується до повної зупинки частинки. За відсутності тертя у всіх 
трьох випадках коливання будуть продовжуватися нескінченно довго при зростанні 
їх періоду. 

Ключові слова: матеріальна частинка, циліндр, рівняння руху частинки, 
сила власної ваги 


