Сучасний стан та перспективи енергоощадного розвитку інженерних систем овочесховищ в Україні та світі
DOI:
https://doi.org/10.31548/energiya3(79).2025.166Анотація
Preserving the freshness and quality of vegetables is an important task for farmers worldwide, including Ukraine. Amid rising energy prices, the energy efficiency of vegetable storage systems is becoming especially important. Therefore, modern technologies focus on the development of energy-saving technical solutions for vegetable storage facilities aimed at reducing energy consumption and environmental impact. Particular attention is paid to the use of renewable energy sources, automated microclimate control systems and optimization of storage conditions.
The paper discusses current trends and prospects for the development of energy-efficient technical systems for vegetable storage facilities in Ukraine and the world. The importance of microclimate optimization for product preservation and minimization of energy costs is emphasized. The study is based on the analysis of scientific publications, regulatory documents and analytical data on ventilation, air conditioning systems and microclimate automation of vegetable storage facilities. A comparative analysis of traditional and modern storage technologies was carried out, including the use of computational fluid dynamics modelling (CFD) to assess the effectiveness of microclimate maintenance systems.
It has been identified that the integration of renewable energy sources (PV panels, heat pumps, cold storage systems) significantly reduces the energy consumption of vegetable storage facilities. The use of CFD modelling allows optimization of the parameters of air exchange, temperature and humidity, which helps to reduce product losses. An analysis of modern technologies shows the growing role of intelligent microclimate control systems that automatically adjust the parameters of the air environment and provide optimal conditions for storing vegetables. The introduction of energy-efficient technologies reduces operating costs and minimizes environmental impact. Conceptual approaches to improving the efficiency of vegetable storage based on a combination of CFD modelling, automatic microclimate control systems, and integration of RES have been investigated. Implementation of these approaches will help improve the quality of product storage, reduce energy consumption, and increase the economic efficiency of vegetable storage facilities. Further research in CFD modelling is important to improve airflow, humidity, and temperature distribution technologies, which will increase the efficiency of technical storage systems.
Key words: the microclimate of vegetable storage facilities, technical systems of vegetable storage facilities, energy efficiency, CFD modelling, renewable energy sources, ventilation
Посилання
1. Priss, О. P., & Kalitka, V. V. (2014). Reduction of losses during storage vegetables sensitive to low temperatures. Progressive Technique and Technologies of Food Production Enterprises, Catering Business and Trade, (1), 209-221.
2. Cherednychenko, V.M., Cherednychenko, L.I. (2010). Technologies of storage of fruits, vegetables and potatoes: Educational book. Vinnytsia: Publishing Centre of Vinnytsia National Agriculture University. 115 с.
3. Khan, F. A., Bhat, S. A., & Narayan, S. (2017). Storage methods for fruits and vegetables. Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir. Shalimar, 1-9.
4. Kotko Y.M. (2015). Role storage facility products horticulture. Visnyk of the Kharkiv Petro Vasylenko National Technical University of Agriculture, (161), 195-203.
5. Dabhi, M., & Patel, N. (2017). Effect of storage ventilation on bulb disease of onion. Advances in Food Science and Engineering, 1(3), 100-106. DOI: https://doi.org/10.22606/afse.2017.13002
6. Raju, P. S., Chauhan, O. P., & Bawa, A. S. (2018). Postharvest handling systems and storage of vegetables. Handbook of vegetables and vegetable processing, Second Edition, 247-264. DOI: https://doi.org/10.1002/9781119098935.ch10
7. Deshko, V. I., Sukhodub, I. O., Yatsenko, O. I. (2022). Study of part efficiencies of the heat emission system using room CDF-model. Technologies and engineering. (5), 17-26. DOI: https://doi.org/10.30857/2786-5371.2022.5.2
8. Scaar, H., Praeger, U., Gottschalk, K., Jedermann, R., & Geyer, M. (2017). Experimental and numerical analysis of airflow in fruit and vegetable cold stores. Landtechnik, 72(1), 1-12. DOI:10.15150/lt.2017.3148
9. Majed, Z. A., & Flamarz, S. A. (2023). Evaluation, Monitoring, and Improving the Airflow and Heat Transfer in a Cold Storage of Foodstuffs, CFD Simulation and Experimental Investigation. Sulaimania Journal for Engineering Sciences, 10(1). DOI: https://doi.org/10.17656/sjes.10165
10. De Baerdemaeker, J., Delele, M. A., Verboven, P., & Nicolaï, B. M. (2011). Multiscale modelling of postharvest storage of fruit and vegetables in a plant factory context. IFAC Proceedings Volumes, 44(1), 616-620. DOI: https://doi.org/10.3182/20110828-6-IT-1002.02886
11. Duret, S., Hoang, H. M., Flick, D., & Laguerre, O. (2014). Experimental characterization of airflow, heat and mass transfer in a cold room filled with food products. International journal of refrigeration, 46, 17-25. DOI: https://doi.org/10.1016/j.ijrefrig.2014.07.008
12. Guo, J., Wei, X., Li, B., Cao, Y., Han, J., Yang, X., & Lü, E. (2020). Characteristic analysis of humidity control in a fresh-keeping container using CFD model. Computers and Electronics in Agriculture, 179, 105816. DOI: https://doi.org/10.1016/j.compag.2020.105816
13. Defraeye, T., Verboven, P., & Nicolai, B. (2013). CFD modelling of flow and scalar exchange of spherical food products: Turbulence and boundary-layer modelling. Journal of Food Engineering, 114(4), 495-504. DOI: https://doi.org/10.1016/j.jfoodeng.2012.09.003
14. Cao, Y., Gong, Y. F., & Zhang, X. R. (2020). Impact of ventilation design on the precooling effectiveness of horticultural produce — a review. Food Quality and Safety, 4(1), 29-40. DOI: https://doi.org/10.1093/fqsafe/fyaa004
15. Delele, M. A., Ngcobo, M. E. K., Getahun, S. T., Chen, L., Mellmann, J., & Opara, U. L. (2013). Studying airflow and heat transfer characteristics of a horticultural produce packaging system using a 3-D CFD model. Part I: Model development and validation. Postharvest Biology and Technology, 86, 536-545. DOI: https://doi.org/10.1016/j.postharvbio.2013.08.014
16. Літовко, Б. М., & Лідер, М. Ю. (2021). Analysis of Ways to Increase Energy Efficiency of Ventilation and Air Conditioning Systems. Visnyk of Vinnytsia Polytechnical Institute, (4), 47-55. DOI: https://doi.org/10.31649/1997-9266-2021-157-4-47-55
17. Emragi, E., Sathuvalli, V., & Jayanty, S. S. (2021). The impact of ventilation conditions on the quality of Rio Grande Russet tubers during long-term cold storage. Journal of Agriculture and Food Research, 3, 100095. DOI: https://doi.org/10.1016/j.jafr.2020.100095
18. Indergård, E., Thomsen, M. G., Heltoft, P., Asalf, B., Nordskog, B., Widell, K. N., & Larsen, H. (2019). Industrial storage of root vegetables: Energy and quality aspects of existing cold-storages. In Proceedings of the 25th IIR International Congress of Refrigeration. Montréal, Canada, August 24-30, 2019. DOI: 10.18462/iir.icr.2019.950
19. Pathmanaban, P., Gnanavel, B. K., Anandan, S. S., & Sathiyamurthy, S. (2023). Advancing post-harvest fruit handling through AI-based thermal imaging: applications, challenges, and future trends. Discover Food, 3(1), 27. DOI: https://doi.org/10.1007/s44187-023-00068-2
20. Majeed, Y., Khan, M. U., Waseem, M., Zahid, U., Mahmood, F., Majeed, F., & Raza, A. (2023). Renewable energy as an alternative source for energy management in agriculture. Energy Reports, 10, 344-359. DOI: 10.1016/j.egyr.2023.06.032
21. Amjad, W., Munir, A., Akram, F., Parmar, A., Precoppe, M., Asghar, F., & Mahmood, F. (2023). Decentralized solar-powered cooling systems for fresh fruit and vegetables to reduce post-harvest losses in developing regions: a review. Clean Energy, 7(3), 635-653. DOI: https://doi.org/10.1093/ce/zkad015
22. Patel, D. P., & Jain, S. K. (2024). Development and performance evaluation of a portable solar‐assisted evaporative cool chamber for preservation of perishables. Journal of Food Process Engineering, 47(8), 14716. DOI: 10.1111/jfpe.14716
23. Awasthi, R., Chattopadhyay, S., & Ghosh, S. (2019). Integration of solar charged PCM storage with VAR system for low capacity vegetable cold storage. Journal of Physics: Conference Series. Vol. 1240, No. 1, p. 012070. DOI: 10.1088/1742-6596/1240/1/012070
24. Xiang, B., & Zhang, X. (2023). Advancements in the development of field precooling of fruits and vegetables with/without phase change materials. Journal of Energy Storage, 73, 109007. DOI: https://doi.org/10.1016/j.est.2023.109007
Опубліковано
Номер
Розділ
Ліцензія
Стосунки між правовласниками і користувачами регулюються на умовах ліцензії Creative Commons Із Зазначенням Авторства – Некомерційна – Поширення На Тих Самих Умовах 4.0 Міжнародна (CC BY-NC-SA 4.0):https://creativecommons.org/licenses/by-nc-sa/4.0/deed.uk
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див.The Effect of Open Access).