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Abstract. The movement of material particles along rotational planes is complex,
since it should be considered as the result of the movement of the plane itself and the
particle along this plane. The task becomes more difficult if the moving plane is inclined at
a certain angle to the horizon. Its solution makes it possible to find out the regularities of
the movement of a particle along an inclined plane, which rotates around an axis
perpendicular to it.

The purpose of the study is to establish the patterns of movement of material particles
on a flat disc with and without blades, which rotates around a perpendicular axis inclined
to the horizon.

If a round disk rotating around an axis perpendicular to it is located horizontally,
then the kinematic parameters of the particle's motion on it do not depend on the point of
impact of the particle on the disk. If the disk is tilted at a certain angle p to the horizon, it
is obvious that the absolute trajectories of the particle’s movement and other parameters
of the movement will not be the same and will depend on the sector of the disk from which
the particle starts its movement.

The relative and absolute motion of a particle on an inclined disk with and without
rectilinear blades is considered. A system of differential equations of particle motion has
been compiled using the accompanying trihedron of the transfer trajectory, which is a
circle, and Frenet's formulas. Numerical integration of the system was carried out. The
obtained results were visualized.

It was established that when particles hit an inclined disk that rotates around its own
axis, the absolute trajectories of motion differ significantly from the trajectories of motion
along a horizontal disk, and the difference in trajectories increases with an increase in the
angle of inclination f. If rectilinear vanes are installed on the disc in the radial direction,
the difference between the particle motion parameters will increase insignificantly as the
angle p increases. When increasing the angular speed of rotation of the disk at a given
angle, the shape of the absolute trajectories of particle motion practically does not
change, but they are different depending on the point of impact on the disk. There is a
certain area of impact and a certain sector of trajectories, after passing which the particle
flies up after leaving the disc. Among this set, it is possible to analytically find the point of
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impact and the corresponding trajectory, which provide the maximum angle of elevation
of the particle (equal to the angle p).

Key words: material particle, inclined disk, angle of inclination, angular velocity,
trajectory of particle movement

Topicality. The movement of material particles along rotational planes is complex,
since it should be considered as the result of the movement of the plane itself and the
particle along this plane. The task becomes more complicated if the moving plane is
inclined at a certain angle to the horizon. Its solution makes it possible to find out the
patterns of movement of a particle along an inclined plane, which rotates around an axis
perpendicular to it.

Analysis of recent research and publications. The movement of a material particle
on the rotating surfaces of the working bodies of agricultural machines is considered in the
works of academicians of the Ukrainian Academy of Sciences P.M. Vasylenko [1] and
P.M. Zayki [2]. In these works, the trajectories and other parameters of the movement of a
particle that falls on a horizontal disk rotating around a vertical axis are investigated. The
study of the general case of dispersion of mineral fertilizers by a centrifugal dispersing
body was carried out in the work [3]. Dispersion of particles occurs more effectively when
they fly upwards at a certain angle to the surface of the field when leaving the working
body [4]. In part, this effect can be achieved by installing a flat rotating disc inclined to the
horizontal plane.

The purpose of the study is to study the patterns of movement of material particles
on a flat disk with and without blades, which rotates around a perpendicular axis inclined
to the horizon.

Materials and methods of research. If a circular disk rotating around an axis
perpendicular to it is located horizontally, then the kinematic parameters of the movement
of a particle along it do not depend on the point of impact of the particle on the disk (it is
not the distance from the axis of rotation, but the angle from a certain initial position that
Is meant). If the disk is tilted at a certain angle g to the horizon, it is obvious that the
absolute trajectories of the particle’s movement and other parameters of the movement will

not be the same and will depend on the sector of the disk from which the particle starts its
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movement. In fig. 1, and the disk is located so that its plane is inclined at an angle g to the
horizontal plane. Axes Ox and Oy lie in the plane of the disk, intersect in its center and are
located so that the axis Ox and all lines parallel to it are the lines of greatest inclination of
the disk, and the axis Oy is parallel to the horizontal plane. We will consider this system as

stationary.

-mgsingcosa

Fig. 1. A flat disk assigned to two rectangular systems (stationary system Oxy
and the moving system of the accompanying trihedron of a circle of radius r =1/ k ):
a — mutual arrangement of systems before the start of movement;
b — decomposition of the forces acting on the particle in the system of the
accompanying trihedron

Let's introduce another system - a moving accompanying trihedron of the trajectory
of the transfer movement (circles of radius r =1/ k). It will rotate with the disk like a body
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rigidly attached to the disk. At the beginning of the movement, the unit orts rare
nrespectively parallel to the axes Ox and Oy, and the third ort bof the binormal is

perpendicular to the disk plane (Fig. 1a).

Let's assume that before the start of the movement of the disk, the material particle is
at point A - the origin of the coordinates of the accompanying trihedron. When the disk
rotates, point A will move along a circle of radius r, and the particle will shift under the
action of centrifugal force and take position B in the system of the accompanying trihedron

(Fig. 1, b). If the position of the particle in the system of the accompanying trihedron is

denoted by coordinates p, (projection of the distance to the particle on the ortho tangent
r) and p, p. (projection of the distance to the particle on the orthos of the main normal

n), then the absolute acceleration in the projections on these orthos will be written [5]:

w, =vi(p! —k?p, - 2kp, )

W, :vf\(p,'{—kzpn+2kp;+k), @)
where v, is the speed of movement of the top of the trihedron in a circle of radius r. It can
be written in terms of the angular speed of rotation of the disc: v o =w r or v 5, =w/ K, where
k is the curvature of a circle of radius r (transfer trajectory). Differentiation in formulas (1)
Is carried out according to the arc coordinate s - the length of the arc of the transfer
trajectory.

The weight of the particle at any point of the disk can be divided into two
components: the component mg sin B, which is in the plane of the disk and is directed
along the line of greatest inclination, and the component mg cos , which acts on the plane
of the disk in a perpendicular direction. Let's write down the differential equations of
motion of the particle in the projections onto the orthos of the accompanying trihedron
after it has turned to the angle o with respect to the fixed coordinate system:

mw,_ =-mgsin gcosa —F,;
mw, =mgsin gsina - F,,

(2)

where F.and F,are the components of the friction forces in the projections on the

corresponding vertices of the trihedron.
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To find the friction force, we first find the reaction of the disk plane by projecting the
acting forces onto the binormal b:
N =mgcosf. (3)
If the coefficient of friction f of the particle on the disk is known, then the force of
friction can be found from the expression:
F = fN = fmgcos 5. 4)
Since the force of friction is directed tangentially to the trajectory of the relative

motion, its components will be written on the 7 orths n:

mgo; . mgp;
F=f— F=f_—2 5
AR NARY-S ©

By substituting the expressions of the components of the friction force (5) and

absolute acceleration (1) in (2), and bearing in mind that a=ks and v o =/ k, we obtain a

system of second-order differential equations with two unknown functions: p, = p,(s)and

Pn = P, (8) . After reduction by the mass m of the particle, they will be written:

_@u@[f plLoos

"=Kk?p_ +2kpo' —sin gcosks |;
P P Ln 0)2 m ﬂ J

14 ! gk2 pr"l Cosﬂ H H
pr=k*p, —2kp. —k —== [f +sin Ssin ks}.

Research results and their discussion. System (5) was solved by numerical

(6)

methods. Dependencies p, = p,(S)and p, = p,(S) describe the trajectory of relative

motion in the system of the accompanying trihedron. In this case (disc without blades),
this trajectory will be a spiral. A more interesting task is the study of the absolute motion

trajectory, which is described by the equations [6]:
Xg = p, COSKkS— p, sin ks+%sin Ks;

(7)

Ys = p, Sinks+ p, cos ks—%cos ks.
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Fig. 2. Absolute trajectories of particle motion on an inclined disc without blades
at =20 s™; k=20 m *; =0.3:
a-p=30°% b-p=60°

In fig. 2, the absolute trajectories of the particle motion along the disc are constructed
according to equations (7) for =30 ° and =60 ° and under equal other conditions. The
particle was fed to the disk at a distance of r =0.05 m from the center of rotation with an
initial absolute velocity equal to the transfer velocity (va =wr) through 30 °along the disk's
rotation. The trajectories are built for one complete revolution of the disk. From fig. 2, it
can be concluded that as the angle g increases, the amount of particle lift decreases,
approaching over time to the line of greatest inclination of the disk plane. If at the moment
of delivery the absolute speed of the particle is zero, then it does not rise up at all. In fig. 3,
the trajectories of the absolute movement of a particle with different coefficient of friction
when it is fed to different points through a 90 ° rotation of the disk are plotted. At f =0, in
all cases the absolute trajectory is a straight line (marked by dots), which coincides with
the line of greatest inclination. With an increase in the coefficient of friction, there is an

increase in the deviation of the absolute trajectory from the line of greatest inclination.
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Fig. 3. Absolute particle motion trajectories at f =0 (straight line, depicted by
dots), f =0.15 (dashed line), f =0.3 (solid line) and ) #=30°:
a—w=20s", the disc makes half a revolution;
b — w=40 s, the disc makes a complete revolution

It is interesting that with an increase in the angular speed of rotation of the disk, the
shape of the absolute trajectory practically does not change, but the particle travels a
shorter path in absolute motion. Trajectories in fig. 3,a and 3,b are almost the same,
although in the first case the disk makes a half revolution, and in the second - a full
revolution, but at twice the angular speed of rotation.

It is obvious that spreading process materials using an inclined disc without blades is
impractical. Therefore, let's investigate the absolute particle trajectories for a disk with

rectilinear blades fixed perpendicular to its plane in the radial direction. In this case, the

relative movement is carried out along the center of the main normal n. So,
p, =p.=p’=0. The projections of the absolute acceleration of the particle according to
(1) will be written:
w, =-2vzkp,; w, =V2 (o1 —k?p, +K). (8)
Let's formulate the differential equation of motion of the particle. In the orthographic
projection, rwe have:
—2mvikp! = —mg sin Scosks+ N, (9)
from which the pressure force of the blade on the particle will be:

N, = m(g sin Bcosks—2vikp! ) (10)
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We will assume that the coefficient of friction of the particle on the disk and on the

blade is the same. Then the differential equation of motion in the projection on the ort
nwill be written:
mvf\(pr;' —K?p, + k): mg sin Asin ks— fmg cos - N, . (11)

After substituting (10) into (11), reducing by mass m and simplifying, we get:

2 2

—2fko! —k?p, :%sin Bsin ks— fglz (cos g8 +sin Bcosks)—k. (12)
w w

Equation (12) has an analytical solution:

P, =%+ f M+cle(f_ et o +C,e
w

(f+mjks

n
j—)zwg Sllrlﬂ [Zf cosks— (1 f )sm ks] 43

The angle a of the rotation of the trihedron is determined through the arc coordinate s
(a=ks) or through time (a=wt). Thus, by substituting the expression o t instead of ks in
equation (13), we proceed to the relative movement of the particle along the vane as a
function of time: p, = p,(t). Differentiating the obtained result by time t, we find the

expression of the relative speed. Let's write down both expressions:

P (1) = k gcosﬂ e ( —\/ﬁjwt +Cze(f+m)wt N
C()
i 14
+ﬂ%s%)[2fcosa)t—(l—f2)sin ot]; 49
w
V:'O:jit) . ( \/ﬁ% et wt+C a)( +\/F¥ f+ e
(15)

—ﬁi‘j—ﬁ)[ﬂsm a)t+(1 f )cosa)t]
()

Constant integrations ¢ ; and ¢ , can be found under the condition that when a particle
hits the disk, when the angle of its rotation from the zero position is the angle ¢ (it is equal
to the angle a of the rotation of the trihedron), the distance of the relative movement

p, =0and the relative speed v =0. If the disk is horizontal, then the rotation angle ¢ is

irrelevant, since the results will be the same for any value. As a rule, it is accepted at t =0,
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that is, p=w t will also be zero. For our case, its value is important, therefore ¢#0 and the

expressions of integration constants in this case have a somewhat cumbersome form:

. _e(fh‘/ﬁ)"’ 2,1+ fz(\/1+ f2+ f)(a)2 + fgkcos )+ _
Cake?(L+ 17) + gksin ,B[(fz—l)sin @+2f cosp++1+ f2(cosp+ f sin @) ,

2 16
C el 2T+ £2 (e 17— £ J(w? + fgkcos g)+ (19
© koL 1) + gksin ,B[(f2 —l)sin @+2f cosp—/1+ f2(cos g+ f sin p) |

Using formula (14) taking into account (16), the law of relative movement of a
particle along the blade at different points of its impact on the disc (at different values of
the angle ¢) can be found. By substituting it into equation (7), we obtain the trajectory of
the absolute motion of the particle (at the same time, in the indicated equations, you also
need to switch to the time parameter t, that is, instead of ks, put wt, and also keep in mind

that o, =0. Fig. 4 shows the absolute trajectories of the particle’s motion along the surface

of a disk with a diameter of 0.3 m (R =0.15 m) when it hits the disk at a distance r =1/ k
through 30°. The direction of the x axis shows the rise of the plane of the disk, the y axis is
parallel to the horizontal plane. The trajectories are constructed for the fourth It can be
seen from Fig. 4 that in both cases (8=30°, Fig. 4a and f=60°, Fig. 4b) the largest angle of
elevation of the particle when it leaves the disk will be in the case when it hits it at ¢=330
% (point A). At the moment of leaving the disk (point B), the trajectory is parallel to the x
axis, that is, to the line of greatest inclination of the plane of the disk. Therefore, the angle
of elevation of this particle is the largest among other particles and is equal to the angle f.
From Fig. 4, a, b, it is also clear that the value of the angle £ does not significantly affect
the absolute trajectories of the particles. In particular, in both cases, the particle must hit
the disc at ¢=330 %in order to reach an ascent angle equal to # when leaving it, while the
disc rotates by 82.6°.
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Fig. 4. Absolute trajectories of the movement of particles falling on an inclined
disk at a distance of r=0.05 m from the axis of rotation through 30° when it completes
a quarter of a revolution. Output data: ®=20 s™; k=20 m *; £=0.3:
a —angle of inclination of the disk to the horizontal plane g=30°;
b — angle of inclination of the disk to the horizontal plane f=60"

According to formula (15), the speed of the relative movement of the particle along
the blade can be found. In fig. 5, a graph of the relative movement of the particle from the
moment it hits the disk (point A, Fig. 4) to the moment it leaves the disk (point B) is
plotted. It can be seen from the graph that the change in the angle # of the inclination of
the disk from 30 °to 60 ° practically does not affect the relative speed, only when the disk
is located horizontally (8=0°) the speed changes slightly.

The absolute velocity of the particle upon exiting the disk is decisive, since the range
of further flight depends on its value. It can be found in two ways: by differentiating over
time the expression of the absolute trajectory (7) (under the condition that it is written as a
function of time), or find it as a vector sum from its projections onto the vertices of the
trihedron [ 6 ]:

Vo =V, [rll—kp, + o))+ ko, + 01). (17)
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Fig. 5. Graphs of relative:
a — absolute b — velocities of a particle moving along a straight blade of an inclined
disk (f=0°...60°; ® =20 s"; k=20m *; £=0.3)

Formula (17) is general; for our case p, =p.=0. In fig. 5, b graphs of absolute

particle velocities as a function of the angle of grotation of the disk are plotted, the relative
velocities of which are shown in fig. 5, a.

Let's increase the angular speed of rotation of the disk by two times and find the
absolute trajectory and speed of movement of the particle. The corresponding graphs are

shown in fig. 6.
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Fig. 6. Graphs of the dependence of the movement of a particle on an inclined
disk at p=45% w =40 s"; k=20 m *; = 0.3; R=0.3 m:
a — graphs of absolute trajectories;
b — graphs of absolute (solid line) and relative velocities
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The angular speed of rotation of the disc, but also other parameters were changed:
the angle g, the radius of the disc R. All absolute trajectories (Fig. 6, a) are also
constructed after 30 ° when the disk is rotated by 117°. In order for the angle of ascent of
the particle when leaving the disk to be maximum, the particle must hit it at ¢=300°. The
corresponding trajectory is shown by a dashed line. If the point of impact of the particle
differs slightly from ¢=300°, then it will also fly upwards when leaving the disk, but at a
smaller angle. In general, this sector of particle impact forms an angle from 30 °to -150 °
(in Fig. 6, the extreme trajectories limiting it are marked with dotted lines). The tangents to
the extreme trajectories at the point of exit from the disk are approximately parallel to the
y axis, so the particles at the moment of exit from it will fly parallel to the horizontal
plane. In fig. 6b shows the graphs of the relative and absolute velocities of one of the
particles that hits the disk at ¢=270 °, depending on the angle of its rotation.

Conclusions and perspectives. When particles hit an inclined disk rotating around
its own axis, the absolute trajectories of motion differ significantly from the trajectories of
motion along a horizontal disk, and the difference in trajectories increases with the
increase of the inclination angle g. If rectilinear vanes are installed on the disk in the radial
direction, then the difference between the parameters of the particle motion (absolute
trajectory, relative and absolute velocities) increases slightly as the angle f increases.
When increasing the angular speed of rotation of the disk at a given angle, the shape of the
absolute trajectories of particle movement practically does not change, however, they are
different depending on the point of impact on the disk (in the angular dimension). There is
a certain area of impact and a certain sector of trajectories, after passing which the particle
flies up after leaving the disc. Among this set, it is possible to analytically find the point of
impact and the corresponding trajectory, which provide the maximum angle of elevation
of the particle (equal to the angle p).
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JOCJII)KEHHS PYXY MATEPIAJIbBHOI YACTHUHKMU IO IJIOCKOMY
JIUCKY, SIKUIA OBEPTAETHCSI HABKOJIO MEPIIEHIUKYJIAPHOI OCI,
HAXMJIEHOI 10 TOPU3OHTY

C. @. Ilununaxa, A. B. Heceioomin

AHoOTauis. Pyx mamepianohux uacmuHoK no pomayiiHux niOWUHAxX € CKIAOHUM,
OCKIIbKU U020 CLIO PO3210amu K pe3yibmam pyxy camoi nIOWUHU | YACMUHKU NO Yill
nrowuni. 3adava cmae CKAaoHiulo10, AKWO PyXoma NIOWUHA HAXULEHA Ni0 NeGHUM KYIMOM
0o 2opuzonmy. Ii posze’ssamms Oae Modciugicmv 3’acyéami 3aKOHOMIDHOCMI DYXY
YACMUHKU NO NOXUJILL NIOWUHI, KA 00epmMAEmMbCs HABKOI0 NEPNEeHOUKVIAPHOT 00 Hei OCl.

Mema Oocnioxcenns — 6cmano8umMu 3aKOHOMIPHOCMI PYXY MAmMepiarbHUX YacmuHoK
1O NAOCKOMY OUCKY 3 JIOnamkamu i 6e3, siIKuil 06epmaemsbcsi HA8KOA0 NEPNEeHOUKYIAPHOT
OCI, HAXUJIEHOI 00 20PU3OHM).

Axuwo xpyenutl Ouck, wjo obepmacmuvcs HAB8KON0 NEePREeHOUKVIAPHOL 00 HbO2O OCI,
PO3MAao8anull 20pU30HMAIbHO, MO KIHEMAMUYHI napamempu pyxy 4acmuHKu no HbOMY
He 3anedxcams 6i0 MOYKU NONAOAHHA YACMUHKU HA OUCK. AKWo dHc OucK Haxuaumu nio
NeBHUM Kymom [ 00 20pu3oHmy, mo O0YeBUOHO, WO abCONOMHI MPAEKMOpIi pyxy
yacmuHKuY 1 iHWi napamempu pyxy He 06y0ymb 0OHAKOBI [ 3a/1edcamumyms 6I0 CceKmopa
OUCKa, i3 AKO20 YACMUHKA PO3NOYUHAE C8Ili DYX.

Poszensinymo eionocnuu ma abconromuuti pyxu 4acmuHKU NO HOXULOMY OUCKY 3
NPAMONIHIUHUMU onamKkamu ma 6e3 Hux. CkradeHo cucmemy OughepeHyiaibHux piHAHb
PYXY 4aCMUuHKU 13 3aCMOCY8AHHAM CYNPOBIOHO20 MPUSPAHHUKA NePeHOCHOI MpaeKkmopii,
KO0 € Kono, ma ghopmyn Dpene. 30iticneno yucenvhe inmezpyeanus cucmemu. 3pooieHo
8I3yaANI3aAYil0 00ePIHCAHUX Pe3YTbIMamis.

Bcmanoeneno, wo npu nonadanui 4acmuHoK HA NOXUAUU OUCK, AKUL 00epmacmucs
HABKONI0 81ACHOI 0CI, aOCONIOMHI MPAEKMOPIl pPyXy 3HAYHO BIOPIZHAIOMBC  BI0
MPAEKMOPIti pyxXy HO 20PU3OHMATLHOMY OUCKY, NPUUOMY BIOMIHHICMb Y MPAEKMOPISAX
3pocmac i3 30ibuleHHAM Kyma Haxuny p. Axwjo Ha Ouck ecmarHosumu NpsSAMONIHIUHI
Jonamky 'y paoianbHOMy HANPAMI, MO DIHUYS MIdC NaApamempamu pyxy YaCMUHKU
3pocme Hecymmeso npu 30invuienni kyma f. Ilpu 36invuwenni Kymogoi weuoxocmi
00epmanHs OUCKA Npu 3a0aHOMy Kymi popma abcortomuux mpackmopii pyxy 4acmuHoK
NPAKMUYHO He 3MIHIOEMbCS, OOHAK B0HU € DISHUMU 8 3AJIeHCHOCMI 8i0 MOYKU NONAOAHHS
Ha ouck. Icmye nesna obnacmv nonaodamHs 1 NEGHUL CEKMOp MpPAECKMOPItl, Nicjs
NPOXOONCEHHSA AKUX YACMUHKA NICIAL cX00Y i3 oucka semums e2opy. Ceped yiei MHOMCUHU
MOJCHA 3HAUMU AHAIMUYHUM CROCOOOM MOYK)Y NONAOAHHS [ BIONOBIOHY MPAEKMODIIO,
AKI 3a0e3ne4yiomsb MaKCUMANbHUL Kym niouomy 4acmuHku (pienuil kymy p).

Kurwu4osi cinoBa: mamepianvna wacmunka, noxuauil OUcK, Kym Haxujy, Kymoea
WBUOKICIMb, MPAEKMOPIA PYXY YACMUHOK
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