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AUTONOMOUS VEHICLES ESSE: UNSUPERVISED ONLINE LEARNING WITH
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Abstract. The presented study explores continuous adaptation techniques for monocular depth estimation and
semantic segmentation to improve real-time scene understanding capabilities for autonomous vehicles and driver
assistance systems. The proposed methodologies enable models to dynamically adjust to new information in video
sequences, sustaining high performance amidst ongoing changes in scene appearance, lighting, and other contextual
factors. The first contribution is continuous online adaptation for monocular depth estimation, eliminating the need for
isolated fine-tuning techniques and retaining information across video frames. The method addresses data drift by
perpetually adapting to new frames, preventing overfitting due to limited data diversity. Experience replay is integrated
to stabilize the learning process and introduce minimal computational overhead. Techniques like auto-masking and
velocity supervision help differentiate between stationary and moving objects, mitigating errors related to inconsistent
depth cues. The study validates the effectiveness of the proposed approach through intra-dataset and cross-dataset
adaptation scenarios, showing substantial accuracy gains while maintaining real-time runtime.

Keywords: online adaptation, unsupervised learning, monocular depth estimation, semantic segmentation,
autonomous cars.

Introduction. Unsupervised online adaptation plays a crucial role in advancing the real-time
scene understanding capabilities required for autonomous vehicles and advanced driver assistance
systems [1]. This study explores continuous adaptation techniques for both monocular depth
estimation and semantic segmentation, aiming to enhance the robustness and adaptability of models
when confronted with varying environmental conditions in real-world driving scenarios [2]. The
proposed methodologies enable models to dynamically adjust to new information as it appears in
video sequences, a feature that is essential for sustaining high performance in the face of ongoing
changes in scene appearance, lighting, and other contextual factors.

There are several key research methodologies classification for unsupervised online adaptation
for depth estimation and semantic segmentation in autonomous vehicles:

* mloU: Mean Intersection over Union (used for segmentation tasks).

» Abs Rel: Absolute Relative Error (for depth estimation).

* RMSE: Root Mean Squared Error (for depth estimation).

* NLL: Negative Log-Likelihood (used in uncertainty metrics).

Analysis of research and publications. The first contribution of this work centers on
continuous online adaptation for monocular depth estimation. Traditional approaches to adapting
depth models often rely on isolated fine-tuning techniques, which adapt the model separately for each
frame, frequently resetting it to a pretrained state [3]. These techniques tend to be computationally
intensive, as they require multiple (20-50) backpropagation steps per frame, which limits their
feasibility in real-time applications [4, 5].

Purpose. The purpose of this study is to conduct a generalized overview of exiting issues,
scientific methods and potential solution for autonomous vehicle detection using unsupervised online
learning, with emphasis on monocular depth estimation and semantic segmentation approaches.
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Methods. The proposed approach performs continuous adaptation by retaining information
across video frames, eliminating the need to restart from a pretrained state with each new frame. This
results in a tremendous increase of runtime speed, as only a single backpropagation per frame is
needed (Table 1).

Table 1 — Summary of Unsupervised Online Adaptation Approaches for Depth Estimation and
Semantic Segmentation*

online using semantic
segmentation and depth
estimation jointly.

Methodology | Adaptation Key Techniques Datasets Used Metrics Results/Performance
Type Evaluated
Baseline Offline Pretrained on a large KITTI, mloU, Abs Rel, Baseline accuracy for
Network Training annotated dataset; no Cityscapes RMSE segmentation and depth:
online adaptation. mloU = X%, Abs Rel =,
RMSE =Z.
Unsupervised Self- Photometric consistency |KITTI, Virtual| mloU, Abs Rel, | Improved mloU (+2-3%),
Online supervised loss, spatial KITTI RMSE Reduced Abs Rel (-0.1),
Adaptation transformation Reduced RMSE (-5%).
consistency, and
temporal smoothing.
Domain Cross-domain Style transfer SYNTHIA —»| mloU, Depth Enhanced mloU:
Adaptation Adaptation | (CycleGAN), domain- Cityscapes Accuracy SYNTHIA to Cityscapes,
specific augmentations, ~5-7% improvement.
and entropy
minimization.
Continual Online, Incremental updates |KITTI (Online| Lifelong mloU, Maintains ~95% of
Learning Continual | using pseudo-labeling setting) Avg. Depth Error | original accuracy across
Learning and confidence- new environments; <1%
weighted losses. performance degradation in
prior tasks.
Uncertainty- | Uncertainty- | Bayesian networks, KITTI, NLL, mloU, Abs | Improved robustness to
based aware uncertainty-weighted Cityscapes Rel edge cases: +4% mloU in
Refinement Adaptation |loss functions to balance challenging lighting; -8%
depth and segmentation Abs Rel error in occluded
tasks during training and areas.
inference.
Augmented Data Synthetic data Carla IoU, Absolute Near real-time
Data Streams |Augmentation| augmentation with Simulator, Depth Error performance: IoU > 80%,
in Online physics-based KITTI Error reduction of ~10-
simulation and domain 12% over streaming
randomization; frames.
combines geometric and
semantic cues during
online updates.
Teacher- Multi-task |Teacher model generates KITTI, Task-specific | Multi-task mIoU: +3-5%;
Student Adaptation | pseudo-labels, student | Cityscapes mloU, Depth | Depth estimation precision
Framework model refines them Accuracy increases in dynamic

Scenes.

* prepared based on author work and public research data [1-7]

For the references purpose we provide list of relevant mathematical equations based on Table

1 and research data, that had been used to evaluate various models within the scope of this research:
1. Photometric Consistency Loss is used in unsupervised depth estimation to minimize the
difference between the predicted and actual pixel intensities in consecutive frames (I (p) —

pixel intensity at position pp in the current frame, and I, ,; (p) — predicted pixel intensity at

p in the next frame after transformation):
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2. Velocity Supervision incorporates the relative velocity of objects to refine depth estimation
by penalizing inconsistencies (D, (p) — depth prediction for a pixel p; v, — estimated velocity
of the object at time t; and d — distance of the object from the camera):

Lvelocity = Zp |Dt(p) _vit (2)

3. Confidence Regularization restricts predictions from deviating excessively from confident
outputs (P(p) — current prediction confidence for pixel p; P(p) — previous prediction
confidence; and 7 — confidence threshold to determine significant deviations):

Leons = Zp 0,[P(p) —P(®)| — 1) (3)

4. Semantic Segmentation Loss combines depth and semantic segmentation with a shared
representation, using a weighted combination of classification and structure loss (L;;g5s —
cross-entropy loss for semantic classes; Lg¢ry o — loss derived from scene geometry and
depth consistency; and a, f — weights balancing the importance of the losses):

Lseg = aLciass + BLstruce 4)

5. Optical Flow-based Motion Segmentation usedin future enhancements to distinguish rigid
and non-rigid regions (F(p) - optical flow vector at pixel pp. F*(p) - predicted flow vector

at pp.):

Liow = Zp IF(@) — E@)II, 5)

These equations reflect core methodologies and challenges addressed in this research and
proposed future directions for the practical model evaluation in future work.

Results. Data Drift Phenomenon in Depth Estimation and Semantic Segmentation for
Autonomous Vehicles refers to the gradual change in data distribution between the training dataset
(source domain) and the real-world operational data (target domain), which can significantly degrade
model performance. It has strong impact on depth estimation, specially — scale ambiguity, moving
objects challenges and lighting and weather variations challenges. Changes in scene structure (e.g.,
urban to rural environments) lead to discrepancies in depth scale and geometry. Dynamic elements
(e.g., vehicles, pedestrians) cause inconsistencies in depth cues, particularly in monocular setups.
Real-world conditions (e.g., fog, night lighting) differ from training data, leading to unreliable depth
predictions. Additionally, data drift phenomenon impacts semantic segmentation, resulting in class
distribution changes, texture variations and affects scene composition. Certain objects (e.g., road
signs, rare obstacles) may be underrepresented or appear in unexpected contexts. Differences in road
textures, building materials, or vegetation can mislead the segmentation model. Variability in object
density, occlusions, and background features impacts the segmentation's accuracy.

One of the inherent challenges in online adaptation is the phenomenon of data drift, where the
data distribution shifts over time. besides there are numerous other issues arising due this
phenomenon, domain shift limited frame diversity: real-time constraints: bias toward confident
classes:

+ Significant variance in features between training and operational environments affects

generalization

+ Insufficient variability in video frames hampers the model’s ability to adapt to new contexts

* Online adaptation mechanisms need to work within strict time limits without sacrificing

accuracy

» High-confidence predictions for frequent classes may overshadow less frequent but critical

ones

The proposed method addresses this by perpetually adapting to new frames as they appear,
enabling the model to stay aligned with the evolving data. However, a continuous adaptation strategy
can lead to overfitting due to the limited diversity of data within localized segments of video
sequences. To counteract this, experience replay is integrated as a foundational element, which allows
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the model to periodically revisit past data and stabilize the learning process. This not only improves
the model’s accuracy but also introduces minimal computational overhead, owing to the parallel
processing capabilities of modern GPUs. Experience replay proves essential in preventing the model
from forgetting previously acquired knowledge while simultaneously enabling it to learn from current
data in real-time. The presented approach advocates use of the following methods to overcome
present challenges - auto-masking and velocity supervision which helps isolate stationary and
dynamic elements to handle motion-induced errors; confidence regularization that restricts the model
from drifting too far from its confident predictions, preserving semantic integrity; shared
representations for depth and semantics which encourages joint learning to leverage complementary
cues for improved adaptation; auxiliary optical flow networks - provides context about movement in
the scene, aiding both depth estimation and segmentation in dynamic settings.

Monocular depth estimation presents additional challenges, notably scale ambiguity and
disruptions caused by moving objects within scenes. To address these, the adaptation strategy
incorporates techniques such as auto-masking and velocity supervision, which help the model
differentiate between stationary and moving objects, thereby mitigating errors related to inconsistent
depth cues. While these techniques are commonly used in offline depth estimation tasks, this study is
among the first to assess their impact within the context of online adaptation. The effectiveness of the
proposed approach is validated through two types of adaptation scenarios: intra-dataset adaptation,
where the model is trained and tested on different splits of a single dataset with minimal domain shift,
and cross-dataset adaptation, where training and testing are conducted across significantly different
datasets, introducing substantial domain variation. In both cases, the model demonstrates substantial
accuracy gains compared to its not adapted variant, while maintaining real-time runtime.

Building on the advancements in depth estimation, this study extends the online adaptation
framework to semantic segmentation. For autonomous systems, semantic segmentation is critical for
understanding the meaning of each pixel in a scene, identifying objects, road markings, and other
essential elements in real-time. This adaptation approach leverages a shared representation for depth
and semantics, using self-supervised cues derived from the structure of the environment to guide
adaptation in the target domain. As the model learns from these cues, it faces challenges similar to
those in-depth estimation, such as data drift and limited frame diversity. Additionally, there must be
a mechanism to prevent the model adapted using scene structure cues from producing more
geometrically but less semantically plausible outputs. To this end, a confidence regularization
technique is introduced, which restricts the model from deviating too far from predictions it is highly
confident in. This helps to preserve the semantic integrity of the model while no explicit semantic
cues are available for adaptation.

Despite the strengths of the proposed methods, some limitations remain. The reliance on self-
supervised cues, particularly those derived from moving objects, introduces ambiguities in depth
estimation. While excluding moving objects from the adaptation process reduces errors, it restricts
the model’s ability to adapt to these dynamic elements fully. Another limitation arises from the
confidence regularization technique, which tends to favor well-represented classes with high
prediction confidence, potentially impairing adaptation performance for smaller or less frequent
classes. Addressing these limitations may require more sophisticated class balancing strategies,
particularly for online adaptation scenarios. Approaches commonly used in offline training, such as
those that leverage annotations from the source domain, could prove helpful in enhancing
performance for less represented classes.

In addition to exploring improved class balancing, future research may benefit from integrating
auxiliary optical flow networks to aid in detecting moving objects, which would allow the model to
distinguish between rigid and non-rigid regions in the scene. This, however, introduces its own set of
challenges, as even minor inaccuracies in flow estimation could propagate errors in depth estimation.
Alternatively, leveraging stereo camera setups, where the spatial relationship between cameras is
known, may reduce the adverse effects of moving objects on adaptation performance. Future work
could also explore other camera configurations, such as surround view or fisheye lenses, to increase
robustness in complex environments.
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Finally, integrating multi-frame input networks, which use temporal context across several
frames, could further enhance adaptation. While recurrent neural networks (RNNs) are a potential
solution, they require careful optimization to maintain real-time performance. Similarly, networks
that compute cost volumes or feature correlations might achieve higher accuracy but are also more
sensitive to moving objects, necessitating a balance between complexity and real-time feasibility. The
more detailed breakdown of online adaptation in depth estimation and sematic segmentation is
presented in Table 2.

Table 2 — Detailed overview of Online Adaptation in Depth Estimation and Semantic

Segmentation™
Aspect Approach/Technique | Challenges Addressed | Limitations Future Directions
Monocular Auto-masking, velocity | Differentiates between | Struggles to adapt to|Use auxiliary optical
Depth supervision stationary and moving | dynamic elements due | flow networks or stereo
Estimation objects, mitigating | to exclusion of moving | setups to handle moving
scale ambiguity and |objects from | objects more
motion disruptions. adaptation. effectively.
Adaptation Intra-dataset (minimal | Demonstrates - -
Scenarios domain shift), Cross-|substantial accuracy
dataset (significant | gains in both scenarios
domain variation) while maintaining real-
time runtime.
Semantic Shared representation | Guides adaptation | Overemphasis on well-| Develop sophisticated
Segmentation | for depth and semantics, | using scene structure; | represented classes; | class balancing
self-supervised  cues, | prevents deviation from | struggles with | strategies; leverage
confidence highly confident | underrepresented ones. |source domain
regularization predictions. annotations to improve
adaptation.
Confidence Regularization restricts | Preserves semantic | Impairs adaptation | Implement  advanced
Regularization |deviations from highly |integrity in absence of | performance for less|balancing techniques or
confident predictions explicit semantic cues. |frequent or smaller|alternative mechanisms
classes. for  underrepresented
classes.
Dynamic Exclusion of moving|Reduces depth | Limits adaptation to|Integrate = multi-frame
Elements objects from adaptation |estimation errors | dynamic scenes. networks or surround
caused by motion. view setups for better
handling of dynamic
environments.
Proposed Multi-frame inputs, | Provide temporal | Real-time performance | Optimize RNNs for
Enhancements |RNNs, networks using|context and improve |challenges with RNNs|real-time applications;
cost volumes or feature | accuracy. and  sensitivity  to|balance complexity with
correlations moving objects in cost | feasibility in
volume computation. | computationally
constrained setups.

* prepared based on the author's work

Conclusions. In conclusion, the study's focus on online adaptation, unsupervised learning, monocular
depth estimation, and semantic segmentation highlights the intricate challenges and innovative solutions in the
realm of autonomous systems. By addressing data drift and overfitting through experience replay and advanced
techniques like auto-masking and velocity supervision, the proposed approach demonstrates significant
improvements in accuracy and real-time runtime, paving the way for enhanced adaptation strategies. While
limitations regarding self-supervised cues and class balancing strategies persist, future research directions,
including the integration of auxiliary optical flow networks and multi-frame input networks, offer promising
avenues for further advancements in this dynamic field.

This study lays the groundwork for ongoing advancements in online adaptation for autonomous driving,
setting a foundation for adaptive scene understanding models that can maintain high performance in rapidly
changing environments. The insights gained here open pathways for future exploration into more adaptive and
resilient vision systems, ultimately contributing to safer and more reliable autonomous driving technologies.
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OI'JISI ] OHJIAVMH-HABUYAHHSA BE3 YUUTEJISA 3 CEMAHTHYHOI CETMEHTAIIII
I ABTOHOMHUX TPAHCIIOPTHUX 3ACOBIB

Anomauin. Y npedcmaenenomy OOCHIONCEHHI OOCHIONCYIOMbCs Memoou besnepepsnoi adanmayii 075
MOHOKYAAPHOL OYIHKU 2IUOUHU MA CEMAHMUYHOL ceeMeHmayii 01 NOKPAWEH S MOJICTUBOCEN PO3YMIHHS CYEHU 8
peanvHoMy Yaci Oiisl A6MOHOMHUX MPAHCNOPMHUX 3ac00i6 ma cucmem 00nomozu 600i€si. 3anponoHoeaui
Memooono2ii 00380510Mb  MOOCIAM OUHAMIYHO NPUCMOCO8YSAMUCs 00 HOB80I IHopmayii y eideopsoax,
30epieaionu 8UCOKY NPOOYKMUGHICIb HA MJIL ROMOYHUX 3MIH 306HIUHBO20 BUTA0Y CYEHU, OCEIMICHH MA THULUX
KOHMeKcmyanvHux gaxmopis. I[lepwium @neckom € nocmiiina OHAQUH-adanmayis OAs GUMIPIOBAHHS 2IUOUHU
MOHOKYIIAPA, Wo YCy8ae nompedy 8 i301606aAHUX MeMOoO0ax MOHKO20 HALAulmyeanHs ma 30epicac ingopmayiio na
gioeokaopax. ILleti memoo ycysac Opeli¢h OaHux, NOCMIUHO AOANMYIOYUCH 00 HOBUX KAOpis, 3anodicarouu
NepesanmadiceHtI0 uepes 0omedHceHy pisHomanimuicms oanux. [losmopHe 8i0meopenus 00c6idy iHme2posano 0Jis
cmabinizayii npoyecy HABUAHHA MA B66C0CHHs MIHIMATLHUX obuucmosanvhux eumpam. Taki memoou, sk
ABMOMAMUYHE MACKYBAHHSA MA CNOCMEPENCEHHS 3a UBUOKICIIO, 00NOMA2AIOMb PO3PIZHAMU HEPYXOMI Ma PYXOomi
00'exmu, nom'aKULYIOUU NOMUTKU, NO8'S3AHI 3 HENOCMIUHUMU CUSHAAAMU 2AuOuHU. JIOCTIONCEHHS NiOMEepoiCcye
eghexmusHicmb 3anpPonoHOBaAH020 NIOX00y 3a OONOMO2010 CyeHapiie adanmayii ecepeduni Habopy Oanux i Midc
Habopamu Oauux, OeMOHCMPYIOYU 3HAYHUL NPUPICM MOYHOCMI Npu 30epediceHHi Yacy GUKOHAHHSL 8 PediCUMI
peanvHoeo uacy.

Knrouosi cnoea: onnaiin-aoanmayis, nasuanms 6e3 yuumens, OYiHKa eIUOUHU, CEMAHMUYHA Ce2MeHmayis,
aABMOHOMHI ABMOMODIN.
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