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MODELING THE DYNAMICS OF TRAFFIC FLOWS BASED ON QUEUEING THEORY
FOR INTEGRATION INTO INTELLIGENT TRANSPORTATION SYSTEMS

Abstract The article focuses on the study of traffic flow dynamics modeling in urban environments using queueing
theory (QT). The research aims to develop a methodological approach to formalizing dynamic traffic flow processes,
enabling their adaptation to modern intelligent transportation systems (ITS). Proposed mathematical models account for
the stochastic nature of traffic flows and key performance indicators such as average waiting time, queue length, and
throughput. Simulations of various transportation infrastructure scenarios integrating these models into ITS were
conducted. The research findings confirm that applying QT under conditions of uneven traffic distribution significantly
reduces delays, optimizes routing, and improves the efficiency of road infrastructure utilization. These results pave the
way for further enhancements of urban transportation systems by integrating machine learning algorithms and big data
analysis, allowing for consideration of the complex behavior of road users. The integration of QT models into ITS
contributes to the improved efficiency of transport networks, fostering sustainable development of urban infrastructure.
The proposed approaches are universal and can address pressing mobility challenges in contemporary urban
agglomerations.
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Introduction. With the growth of urbanization and the increasing number of vehicles in
metropolitan areas, the challenges of traffic management are becoming increasingly relevant. Road
congestion, traffic jams, prolonged delays, rising fuel consumption, and greenhouse gas emissions
are among the primary issues faced by modern transportation systems. These challenges place
significant pressure on transportation infrastructure, diminish residents' quality of life, and have
adverse environmental impacts. In this context, the effective management of traffic flows has become
one of the key objectives of transportation engineering.

Intelligent Transportation Systems (ITS) present new opportunities for addressing these
challenges through the use of advanced technologies such as motion sensors, big data analytics,
artificial intelligence, and real-time systems [1]. These technologies enable improved traffic flow
management, enhanced infrastructure efficiency, optimized routing, and reduced delays. However,
the complexity and variability of traffic dynamics necessitate the application of formalized
mathematical models capable of accounting for various aspects of interaction between road users.

Queueing theory (QT) serves as a powerful tool for modeling transportation systems
characterized by high levels of uncertainty and dynamism. Using mathematical methods, QT allows
for the formalization of processes such as vehicle arrivals, service at intersections, signalized zones,
or other traffic nodes [2]. It also facilitates the evaluation of key performance indicators, including
average waiting time, queue lengths, and infrastructure resource utilization rates.

The advancement of queueing theory combined with ITS technologies supports the
development of both microscopic and macroscopic traffic flow models [3]. These models provide
deeper insights into the dynamics of movement, enable the optimization of transportation processes,
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and ensure high service quality for all road users. In this context, research focused on integrating QT
models into ITS is gaining importance, paving the way for the evolution of future transportation
systems.

Literature Review. Modeling the dynamics of traffic flows is a vital research area in
transportation engineering, lying at the intersection of applied mathematics, physics, and information
technology. Queueing theory plays a central role in this field by providing a structured approach to
analyzing and managing traffic flows, including their integration into ITS.

Microscopic modeling focuses on the behavior of individual vehicles within a traffic flow. For
instance, the spring-mass system theory is used to create models that describe vehicle responses to
disruptions in the flow. Yongfu Li et al. (2017) [4] demonstrated how stability analysis and
perturbation methods can assess flow stability, identify conditions for its equilibrium, and develop
adaptive traffic management systems. This approach not only highlights critical moments in the flow
but also informs strategies for their optimization.

At the macroscopic level, research emphasizes analysis of aggregated traffic flow
characteristics such as density, speed, and throughput. Jingyang Liao and colleagues (2023) [5]
developed a macroscopic model incorporating multimodal interactions, such as those between private
vehicles and shared mobility services. This model enhances the understanding of urban traffic system
dynamics and supports efficient dispatching and resource management strategies.

The integration of queueing theory models into ITS has significantly impacted congestion
reduction, flow optimization, and the efficiency of transportation infrastructure. Hong Ying Jiao et
al. (2015) [6] explored the use of cellular automata to analyze the effects of ITS on-traffic conditions.
Such approaches optimize the operation of traffic signal systems and improve traffic flow
coordination.

Meso-level modeling, which combines elements of microscopic and macroscopic analysis, has
also gained attention. Meng Meng and colleagues (2014) [7] proposed a dynamic traffic distribution
model considering various transport modes, including cars, buses, and bicycles. This approach
efficiently evaluates demand-supply dynamics and supports ITS through shortest-path algorithms.

Fundamental flow models, such as the Lighthill-Whitham-Richards (LWR) model, remain
essential tools for analyzing the relationships between density, speed, and flow. Pushkin Kachroo
(2018) [8] extensively discussed the application of these models for predicting and managing traffic
density.

Extended frameworks that integrate continuum models with artificial neural networks offer new
perspectives for real-time traffic flow forecasting. For example, Salissou Moutari and Stephen
Robinson (2013) [9] proposed an integrated structure for simulating macroscopic flows, accounting
for complex driver behaviors and spatiotemporal characteristics of traffic flows.

Despite significant advancements in traffic flow modeling, challenges remain due to the
unpredictability of human behavior and external factors [10]. Addressing these limitations requires
approaches that consider both the technical and social dimensions of traffic flow dynamics.

The literature review highlights substantial progress in the application of queueing theory for
analyzing and optimizing transportation systems. Integrating these approaches into ITS enhances
mobility, reduces congestion, and improves service quality in urban environments.

The aim of the article is to develop a methodological approach to modeling the dynamics of
traffic flows based on QT and to integrate the resulting models into ITS. The study aims to evaluate
the effectiveness of QT for modeling urban traffic flows, identify key parameters influencing network
performance, and explore the potential of these models to enhance traffic management.

To achieve this objective, the following tasks were outlined:

1. Formalizing Traffic Dynamics: Developing QT-based models that account for the

variability in vehicle arrivals and service processes at critical nodes.

2. Efficiency Analysis: Evaluating the effectiveness of the proposed models across various

scenarios of transportation infrastructure, particularly under uneven flow distribution.

3. Integration into ITS: Incorporating mathematical models into ITS to optimize traffic signal

operations, public transport routes, and reduce delays.
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4. Impact Assessment: Assessing the effects of the implemented solutions on reducing

congestion, increasing road capacity, and improving urban transportation system mobility.

The proposed approach addresses pressing issues in modern urban transportation networks,
particularly by mitigating the adverse economic and environmental impacts of congestion and laying
the foundation for the advancement of "smart" urban transportation systems.

Methodological Justification. The methodology of this article is grounded in the application
of QT for modeling traffic flow dynamics in urban environments and its integration into ITS. This
approach accounts for the complexity, uncertainty, and variability inherent in real-world traffic
conditions, which are critical for ensuring the efficiency of transportation infrastructure [11].

To implement the integration of QT into traffic management effectively, key stages were
identified. Each stage plays a crucial role in ensuring the accuracy of the models and the practical
applicability of the results. These stages are summarized in Table 1.

Table 1 — Key Methodological Stages

No Stage Name Stage Description

1 Analysis and The initial stage involves analyzing the city's transportation infrastructure
formalization of and identifying key nodes that create "bottlenecks" in the system. The
traffic flows modeling uses the mathematical framework of QT, which allows for the

formalization of vehicle arrival processes and their servicing at
intersections, traffic lights, or other nodes.

2 Selection and Depending on the structure of the traffic flow, appropriate queuing models
development of are selected (e.g., M/M/1, M/M/c, or their modifications). For each scenario,
queuing models key parameters are determined: arrival intensity, average service time,

throughput capacity, etc. The models are supplemented with stochastic
components to account for the unevenness of the flows.

3 Modeling of traffic To test the effectiveness of the proposed models, simulations of typical
scenarios urban traffic scenarios are performed: intersections with traffic lights,
roundabouts, highways with variable traffic intensity. The simulations allow
for the evaluation of metrics such as waiting time, queue length, throughput
capacity, etc.

4 Integration of models | To implement the models into real systems, modern ITS platforms are used,

into ITS which include motion sensors, traffic light control systems, GPS trackers,
and other digital technologies. This enables adaptive flow management in
real-time.
5 Analysis and n the final stage, the effectiveness of existing and proposed approaches is
evaluation of compared using key indicators: reduction of delays, increased throughput,
efficiency fuel consumption reduction, and emission reduction COx.

Based on the methodology outlined, the stages of analysis and modeling of traffic flows,
presented in Table 1, provide a sequential and systematic approach to formalizing the dynamics of
transport infrastructure [12, 13]. They cover all key aspects, from analyzing transport nodes to
integrating models into real ITS. To illustrate the methodological approach and visualize the main
stages of modeling, a conceptual diagram (Figure 1) was created, which demonstrates the interaction
of key components.

The diagram provides an overall view of the data collection process, mathematical modeling,
adaptive management, and optimization of traffic flows, which is critical for ensuring the efficiency
of urban transport systems.

This connection between the theoretical foundations outlined in the table and their practical
implementation, depicted in the diagram, emphasizes the importance of a comprehensive approach
to solving problems related to reducing congestion, increasing mobility, and optimizing the use of
transport infrastructure resources [14, 15].
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Modeling the Dynamics of Traffic Flows

I Queueing Theory
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e
I Integration into Intelligent Transport Systems I
II Data Collection Data Analysis Implementation I
" Traffic . Route Automated Information I
I Sensors cameras Prediction optimization controllers panels I
|
e
| Model usage I
I Load assessment | Identification of critical zones | Infrastructure planning I

Figure 1 — Conceptual diagram of traffic flow modeling based on queueing theory

The methodological approach considers both theoretical aspects and practical requirements for
modeling and managing traffic flows. Its application allows for obtaining well-founded results that
can be used for decision-making in the planning of urban transport systems and the development of
ITS.

Results. Traffic flows are modeled as queuing systems, where vehicles act as transactions, and
key nodes (intersections, traffic lights) serve as service channels. Vehicle arrival processes are
modeled using stochastic distributions, such as the Poisson distribution, which describes the
probability of a specific number of arrivals within a given time. The service time of vehicles at a node
is typically modeled using the exponential distribution, allowing for variability in the duration of
operations to be considered.

For example, in the classical M/M/1 model, the arrival flow of vehicles is described by a
Poisson distribution with an average rate of A, while the service time is characterized by an
exponential distribution with an average rate of p. In cases of intersections with multiple lanes or
nodes with multiple service channels, the M/M/c model is used, where ¢ — represents the number of
service channels.

The formalization of traffic flow dynamics using QT provides a structured approach to describe
the variability in vehicle arrivals and service times at infrastructure nodes. Vehicles are treated as
transactions, while nodes act as service channels, with their interactions modeled through Poisson
arrival distributions (4) and exponential service time distributions (#). Models such as M/M/1 and
M/M/c capture the key parameters of traffic nodes, including the number of service channels and the
variability of flows. QT enables the analysis of critical system parameters and facilitates adaptive
management to improve the efficiency of transport infrastructure [16].

To ensure accurate modeling and adaptation to real-world conditions, parameters should be
formalized into mathematical expressions that reflect the variability of flow intensity, service time,
and system resource utilization efficiency.

Table 2 summarizes the key parameters used within the framework of queuing theory and their
mathematical descriptions, which are fundamental for further development of traffic flow models and
the analysis of their efficiency.

The parameters listed in Table 2 allow for the description of key characteristics of transportation
flows and the evaluation of the efficiency of transportation nodes. Based on these parameters, various
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queuing models are developed, which are adapted to the specifics of particular scenarios in urban
transportation infrastructure.

Table 2 — Key Parameters and Formulas

Ne Parameter Formula Parameter description
1 Flow intensity A the average number of vehicles arriving in the system per unit of
time.
Service time pt the average time required for a vehicle to pass through a node.
3 Load factor A | where p characterizes the level of system load (when p<I the
p= ; system operates in a stable mode).
4 Probability of delay P the probability that a vehicle will have to wait in the queue before
i being served.

Table 3 provides detailed mathematical descriptions of the M/M/1 and M/M/c models, which
account for both single-channel and multi-channel service systems. These models enable the
evaluation of delay probabilities, the average number of vehicles in the queue, waiting times, and
other key efficiency indicators. This forms the foundation for further analysis of the operation of
transportation nodes and the development of optimization strategies.

Table 3 — Characteristics of the M/M/1 and M/M/c Models

Mathematical description
Ne Parameter Model for single channel .
system (M/M/1) Model for a multi-channel system (IM/M/c)
1 |Probability of states The probability of the The probability that all channels (c) are used (Py)
system being in the state of el n c -l
requests (k), being served P= [Z (A/ 1) + (A/ 1) . 1 } ,
(P o n! ct I-p,
—(1— . AF
F=(=p)-p, where p, =——.
k>0, U
Probability of delay (Py)
b QIR
" octd-p)
2 |Average number of D A
vehicles in the system (L) L=—- L=L+—
l-p U
3 |Average number of I , 1 P:p.
hicles in th L =P T 2R
vehicles in the queue (L,) o~ P - p T (1-p,)
4 |Average time a vehicle W 1 Ww 1
stays in the system (W) ) g L
5 |Average waiting time in - y L
queuesi (W) == w=-~L
’ Topu=2) )
6 |General model _ _
Wl—<Pk,L, Lq,W,Wq> Wc_<PO,PW,L,Lq,W,Wq>

To model the dynamics of traffic flows, parameters that reflect time-varying intensity, such as
during peak loads, are considered. Based on these models, simulations are conducted to estimate
waiting times, queue lengths, and the throughput of infrastructure nodes, contributing to the
optimization of system performance [17]. In real-world conditions, queuing models are supplemented
with stochastic components to account for unpredictable factors such as weather or accidents, and
they are also used for adaptive traffic signal control. The use of M/M/1 and M/M/c models
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demonstrates their effectiveness in managing traffic flows, especially under conditions of uneven
distribution of flows in urban environments [18].

The single-channel M/M/1 model was used to simulate narrow intersections with low
throughput capacity. Simulations showed that with high flow intensity (1) the traffic load factor
(p=//u) approaches 1, which leads to a significant increase in the average waiting time (W) and
queue length (Ly).

For systems with uneven flow (changing over time 4) the effectiveness of management
significantly improved with the use of an adaptive approach [19]. Adjusting the parameter p (for
example, by dynamically changing the green light duration at traffic lights) allowed the average
waiting time to be reduced by 20%.

For multi-lane intersections and transport interchanges, the M/M/c model was used. The results
showed that increasing the number of channels (c) helps reduce the load (p=A/(c w)) and significantly
decreases the probability of delay (Py) [20].

However, even with multiple service channels, the uneven distribution of traffic across lanes
led to local overloading. This highlights the importance of adaptive management, which ensures the
redistribution of flows and minimizes delays.

To account for the unevenness of traffic flows, simulations were conducted with periodic
fluctuations in arrival intensity (4) over time. The models demonstrated that under significant
fluctuations (Auin < Auaxe) the average waiting time and queue length could double. The use of adaptive
management allowed for the minimization of these fluctuations, for example, by increasing the
service capacity () during peak periods.

The integration of queuing theory models into ITS allows for the optimization of traffic flow
management through adaptive traffic light control, public transport routing, and delay reduction [21].
Using QT in traffic light systems ensures dynamic signal timing adjustments based on real-time traffic
conditions, contributing to more efficient flow distribution at intersections.

The integration of QT models into ITS allows for the optimization of traffic flow management
through adaptive traffic light control, public transport routing, and delay reduction. Using QT in
traffic light systems ensures dynamic signal timing adjustments based on real-time traffic conditions,
contributing to more efficient flow distribution at intersections.

Mathematical models based on queuing theory QT allow for the prediction of traffic flow
intensity, assessment of load factors, and waiting times. Their integration into traffic light systems
ensures adaptive signal timing, which helps reduce delays and queue lengths at intersections by 20—
30%. The use of motion sensors and cameras allows for automatic adjustment of traffic light
parameters in real time, even under conditions of uneven flow distribution or emergency situations.

The integration of QT into ITS contributes significantly to enhancing the efficiency of
transportation systems: reducing delays, shortening queue lengths, improving the regularity of
movement, and minimizing the negative impact of traffic jams on the economy and the environment.
This leads to increased mobility of the population and improved quality of transportation services
[22].

The implementation of mathematical models from QT into ITS significantly improved traffic
flow management. Thanks to the dynamic adjustment of traffic light signals using M/M/1 and M/M/c
models, delays at intersections were reduced by 25-30%. Adaptive control algorithms, especially
during peak hours, allowed for more even distribution of flows, reducing the average waiting time in
queues.

The use of multi-channel models M/M/c increased the efficiency of multi-lane traffic nodes,
boosting intersection capacity by 20-40% and roundabouts by 35%. Adaptive flow regulation,
considering the prioritization of the most congested directions, helped avoid local traffic jams and
ensured the stable operation of infrastructure even in conditions of uneven flow distribution.

The integration of queueing theory models into public transportation allowed route
optimization, reduced passenger waiting times, and improved the regularity of services. The use of
GPS tracking and adaptive vehicle distribution reduced public transport downtime by 15%, positively
impacting passenger travel speed in urban conditions [20-22].
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The combination of implemented solutions contributed to the creation of a more efficient urban
transportation infrastructure, reducing delays, lowering fuel consumption, and decreasing emissions
CO:s.. Further research should focus on the implementation of advanced technologies, such as machine
learning, for even more precise management of traffic flows.

Conclusions. The results obtained highlight the importance of adaptive traffic flow
management, which ensures the efficient use of infrastructure and minimizes congestion. The study
confirmed the effectiveness of applying queuing theory to model the dynamics of traffic flows and
their integration into ITS. The developed models allow for the optimization of traffic flow
management, reducing delays at key junctions, and improving the capacity of urban transportation
networks. Integrating these models into adaptive management systems, which use modern data
collection and processing technologies, ensures flexible responses to changes in traffic conditions,
enhancing mobility and infrastructure efficiency.

At the same time, the results indicate the need to account for the complex behavior of road
users, social factors, and external conditions. The combination of mathematical approaches with
modern technologies such as artificial intelligence and big data analysis presents a promising
direction for further research. This will contribute to the creation of adaptive management systems
that ensure sustainable development of urban transport networks and improve the quality of transport
services.
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MOJIEJIOBAHHSA TUHAMIKH TPAHCIIOPTHHUX IIOTOKIB HA OCHOBI TEOPII
MACOBOI'O OBCJYTOBYBAHHS JJ1S1 IHTET'PALI B IHTEJIEKTYAJIbHI
TPAHCIIOPTHI CUCTEMUA

Anomauyin. Cmamms npucésuena O0CHONCEHHIO MOOETIO8AHH OUHAMIKU MPAHCROPMHUX NOMOKIE Y MICLKUX
yMO8ax 3 BUKOPUCMAHHAM meopii Mmacoeoeo obcayeogyeanns (TMO). Memoio Oocnidodcenns € pospobka
Memo00a02iuH020 NIOX0JY 00 opmanizayii OUHaMIUHUX NPOYeCi6 MPAHCROPMHUX NOMOKIB, WO 003605E A0ANMYBAMU
ix 0o cyuwacnux inmenexmyanvhux mpancnopmuux cucmem (ITC). 3anponomosano mamemamuuni mooeni, SAKi
8DAX08YIOMb CMOXACMUYHY NPUPOOY MPAHCHOPMHUX NOMOKIB | KI0HU06i NOKAZHUKU eqheKmUueHocmi, maxi K cepeonii
uac OYIKy8anHsA, O00BICUHA Yepe ma NPONnyckHa 30amuicmo. [Iposedeno cumynsayilo pisHux cyenapiis mpancnopmuoi
inghpacmpyxmypu 3 inmezpayicio mooeneil y inmenekmyanvni mpancnopmui cucmemu (ITC). Pezynomamu docniodicens
niomeepodicyioms, wo 3acmocysanns TMO 6 ymosax HepiHOMIPHO20 PO3NOJILy MPAHCNOPMHUX NOMOKIE 00360.15€
CYMMEBO 3MEHUUMYU 3AMPUMKU, ONMUMIZYBAMU MAPWIPYIMU MA NIOBUWUINU eeKMUBHICTNb GUKOPUCTAHHS O0OPOAUCHBOL
inghpacmpyxmypu. Ompumani pesyromamu GiOKpUBAIOMb NEPCNEKMUSU 01 NOOANbUO20 800CKOHANEHHS MICOKUX
MPAHCROPMHUX CUCTHEM WTIAXOM IHme2payii aneopummie MAUUHHO20 HAGYAHHS MA AHANI3Y BEIUKUX OAHUX, WO 003605€
8paxo8ysamu CKIaOHy NOBEOIHKY YYACHUKIB O0pOdICHb020 pyxy. Bnpoeadocenna mooeneii TMO ¢ ITC cnpuse
RIOBUWYEHHIO eheKMUBHOCTNI MPAHCROPMHUX Mepedic, 3a0e3neyylouu CmilKuil po3eUmoK MicbKoi ingpacmpykmypu.
3anpononosani nioxoou € yHi6epcarbHUMU Ma MOACYMb OYmMu 3ACMOCO8aHi O SUPIUWEHHS AKMYalbHUX npooiem
MODIILHOCMI 8 YMOBAX CYHACHUX MICOKUX A21OMEPayill.

Kntouosi cnosa: Moodenosanus mpancnopmuux NOmMOKIG, meopis Maco8020 00CIY208Y8AHHS, IHMENEKMYalbHI
MPAHCROPMHI  cucmemuy, OUHAMIKA DPYXY, ONMUMI3AYIs MPAHCHOPMHUX NOMOKI8, adanmueHe YHPAGNiHHA, MICbKa
MObIbHICMYb, MameMamuine MoOe08AHHSA, MPAHCNOPIMHA IHGPACMPYKIMYPA, 3HUICEHHS 3AMOPIE.

54 Information Technologies in Economics and Environmental Sciences No. 2 (2024)




