Generalized mathematical model of index of technical condition of agricultural machine in event of loss of its workingness

Authors

DOI:

https://doi.org/10.31548/machenergy2020.02.187

Keywords:

methodology, availability, efficiency, agricultural machine.

Abstract

In the article the analysis of existing agricultural machines in a healthy state, followed by work on the maintenance system subject to the conditions of reforming of the agrarian sector. Under maintenance refers to the complex of works on maintenance of working capacity or serviceability of the products during use by adjusting, knowledgeable, filling and retaining work. For the assessment of the alternatives it is advisable to conduct morphological analysis of the entire set of possible solutions to the research problem presented in a morphological matrix, which presents the basic functions of the machine and options the subject of the forms of their implementation.
Theoretical research has provided the answer to two fundamental questions – how to change maintenance system depending on the level of development of agricultural production, and what parameters must have the system maintenance service to perform the appropriate intervention with the minimum technologically necessary costs of resources and investment. Assessment of the level of maintenance of agricultural machinery is provided to carry on the totality of organizational and technical factors, formalized through parts and complex indicators, in two phases. The first evaluation of using of the indicators for each factor separately. Second – assessment of a complex indicator (for all factors).

References

Sergejeva N., Aboltins A., Strupule L., Aboltina B. (2018). Mathematical knowledge in elementary school and for future engineers. Proceedings of 17th International Scientific Conference "Engineering for rural development". Jelgava, Latvia, May 23-25, 2018, Latvia University of Agriculture. Faculty of Engineering. Vol. 17, 1166-1172.

Dubbini M., Pezzuolo A., De Giglio M., Gattelli M., Curzio L., Covi D., Yezekyan T., Marinello F. (2017). Last generation instrument for agriculture multispectral data collection. CIGR Journal, vol. 19, 158-163.

Yata V.K., Tiwari B.C., Ahmad, I. (2018). Nanoscience in food and agriculture: research, industries and patents. Environmental Chemistry Letters, vol. 16, 79-84.

https://doi.org/10.1007/s10311-017-0666-7

Masek J., Novak P., Jasinskas A. (2017). Evaluation of combine harvester operation costs in different working conditions. Proceedings of 16th International Scientific Conference "Engineering for rural development". Jelgava, Latvia, May 24-26, Latvia University of Agriculture. Faculty of Engineering. Vol. 16, 1180-1185.

Rogovskii I., Grubrin O. (2018). Accuracy of converting videoendoscopy combine harvester using generalized mathematical model. Scientific Herald of National University of Life and Environmental Science of Ukraine. Series: technique and energy of APK. Kyiv, Ukraine. vol. 298, 149-156. doi: 10.31548/me.2018.04.149-156.

Viba J., Lavendelis E. (2006). Algorithm of synthesis of strongly non-linear mechanical systems. In Industrial Engineering - Innovation as Competitive Edge for SME, 22 April 2006. Tallinn, Estonia, 95-98.

Luo A.C.J., Guo Y. (2013). Vibro-impact Dynamics. Berlin: Springer-Verlag. 213. https://doi.org/10.1002/9781118402924

Astashev V., Krupenin V. (2017). Efficiency of vibration machines. Proceedings of 16th International Scientific Conference "Engineering for rural development". Jelgava, Latvia, May 24-26, Latvia University of Agriculture. Faculty of Engineering. Vol. 16, 108-113.

Zagurskiy О., Ohiienko M., Rogach S., Pokusa T., Titova L., Rogovskii I. (2018). Global supply chain in context of new model of economic growth. Conceptual bases and trends for development of social-economic processes. Monograph. Opole. Poland, 64-74.

Drga R., Janacova D., Charvatova H. (2016). Simulation of the PIR detector active function. Proceedings of 20th International conference on Circuits, Systems, Communications and Computers (CSCC 2016), July 14-17, 2016, E D P Sciences, 17 Ave Du Hoggar Parc D Activites Coutaboeuf Bp 112, F-91944 Cedex A, France, vol. 76, UNSP 04036. https://doi.org/10.1051/matecconf/20167604036

Novotny J. (2016). Technical and natural sciences teaching at engineering faculty of FPTM UJEP. Proceedings of 15th International Scientific Conference "Engineering for rural development". Jelgava, Latvia, May 23-25, Latvia University of Agriculture. Faculty of Engineering. Vol. 15, 16-20.

Pinzi S., Cubero-Atienza A.J., Dorado M.P. (2016). Vibro-acoustic analysis procedures for the evaluation of the sound insulation characteristics of agricultural machinery. Journal of Sound and Vibration, vol. 266 (3), 407-441.

https://doi.org/10.1016/S0022-460X(03)00576-5

Rogovskii I. L. (2019). Systemic approach to justification of standards of restoration of agricultural machinery. Machinery & Energetics. Journal of Rural Production Research. Kyiv. Ukraine. Vol. 10, No 3, 181-187.

https://doi.org/10.31548/machenergy2019.01.177

Rogovskii I. L. (2019). Consistency ensure the recovery of agricultural machinery according to degree of resource's costs. Machinery & Energetics. Journal of Rural Production Research. Kyiv. Ukraine. Vol. 10, No 4, 145-150.

Rogovskii I. L. (2020). Algorithmicly determine the frequency of recovery of agricultural machinery according to degree of resource's costs. Machinery & Energetics. Journal of Rural Production Research. Kyiv. Ukraine. Vol. 11, No 1, 155-162.

https://doi.org/10.31548/machenergy2020.01.155

Published

2020-04-30

Issue

Section

Статті