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Abstract. Improving the reliability of structures of
transport mechanisms and other elements, reducing metal
content, improving performance, expanding functionality
and technical capabilities is a priority area of work to
improve existing and develop new machines for beet
growing. The dynamic model of the chain conveyor which
considers the basic movement and fluctuations of elements
of the drive and a working cloth is developed in work. The
model is represented by a system of discrete masses with
eight degrees of freedom.

The operation of chain conveyors is characterized by
the presence of dynamic forces arising from the pulsating
movement of the chain at a steady rotation of the drive
sprocket. At the start-up site, dynamic forces from
increasing the speed from zero to a certain constant value
are added to these forces. Under such conditions,
significant alternating dynamic loads can occur in the
chain, which as a result of the accumulation of fatigue
phenomena can lead to its premature destruction.
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Introduction

In the existing theoretical and experimental
researches of rod conveyors their constructive
parameters, productivity, damage of root tubers and
separating ability are proved. However, not enough
attention is paid to the study of current dynamic loads,
their nature of change over time and the impact on the
drive elements of the conveyors, the working canvas and
root damage.

During unstable operating modes, the traction
elements, as well as the drive elements are under the
action of dynamic loads. The greatest dynamic loads
occur when starting the conveyor, its output at operating
speeds, as well as when stopping or jamming the web.
Such loads are undesirable and are significant factors that
accelerate the wear of the conveyor belt and drive
elements, as well as affect the damage to the roots when
interacting with the working elements of the conveyors.

The study of dynamic processes in the operation of
conveyors is an urgent task, the solution of which will
assess the dynamic loads acting on its elements and drive
during transients, as well as on this basis to modernize

existing structures and develop new ones that will ensure
high efficiency of beet harvesters.

The dynamics of the movement of chain conveyors
are characterized by variable oscillating loads during
transients and after the exit of the conveyor to steady
state. The study of these loads makes it possible to
determine the most favorable modes of movement of the
conveyor during start-up.

Formulation of problem

The practice of operation of root harvesting machines
confirms that about 30% of all failures are on conveyor
belts. Conveyors of some machines sometimes do not
provide even seasonal operation and need to be repaired or
replaced during operation [1]. During unstable operating
modes, the traction elements as well as the drive elements
are under dynamic load. It is known that significant
dynamic loads are observed when starting the conveyor, its
output at operating speeds, as well as when stopping or
jamming the web [2]. Significant dynamic loads are an
undesirable phenomenon and are among the significant
factors that accelerate the operation of the conveyor belt
and drive elements.

During the start-up of the chain conveyor in the
traction link of the web there are dynamic loads, the
magnitude of which mainly depends on the excess force or
duration of start-up. Under the action of pulses that create
acceleration, small elastic oscillations occur in the
elements of the system. The latter lead to an increase in
inertial loads in comparison with their average values,
which are determined by the laws of motion of an
absolutely rigid body. In the conditions of inconsistency of
speeds of all or some elements of the car such sizes, as
duration of the periods of start (acceleration) and braking,
overload of the engine and transfers, can be defined only
on the basis of dynamic calculations at which both
instability of speed during movement, and inertia of
masses, involved in the movement process

The aim of the work is to increase the efficiency of
chain conveyor by reducing the dynamic loads acting on
the drive elements of the bar conveyor and the working
bodies of the canvas.
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Analysis of recent research results

A significant number of works by domestic and
foreign scientists are devoted to the study of conveyors
with a chain traction body. The main attention is paid to the
issues of wear and strength of the chain traction body, the
theory and calculation of chain engagement, kinematic and
dynamic calculation, as well as the development of new
structural schemes of conveyors operating in a steady state.

Studies of the dynamic processes of the conveyor are
carried out by using different research models. The
application and use of dynamic models to calculate the
loads of conveyors and their drives are considered in many
works, for example [3, 4, 5]. However, these works did not
take into account the modes of operation of the drive,
which affect the uneven movement of the blade, which in
turn accelerates the speed of the mechanism as a whole [6-
14].

Purpose of research

During transients (start, stop), as well as in the area of
steady motion in the structural elements and the drive -
there are significant dynamic loads, which can be several
times higher than the average static loads.

The purpose of the work is to increase the efficiency
of chain conveyors by reducing the dynamic loads acting
on the drive elements and the working bodies of the chain
CoNveyors.

Results of research

It is advisable to take into account the dynamic
calculations the influence of the drive on the characteristics
of the closed circuit of the conveyor belt. Therefore, this
work aims to develop a dynamic model of the bar
conveyor, which simultaneously takes into account the
nature of the movement of the drive mechanism and the
working canvas with the transported cargo. A dynamic
model of a bar conveyor is proposed, which takes into
account both the dynamics of the drive and the dynamics
of the working web, taking into account the elastic
properties of their individual elements. In this dynamic
model (Fig. 1) the bar conveyor is presented as a
holonomic mechanical system with eight degrees of
freedom (n = 8) of discrete rotating 4, I, 13, and 17 and
translational ms, ms, ms, and mg masses. Here Iy, I, I3, I7
moments of inertia, respectively, of the rotor of the drive
motor, the rotating parts of the gearbox, the drive shaft with
sprockets, reduced to the axis of the drive shaft and the
guide rollers relative to its own axis. The working branch
of the conveyor is represented by three discrete masses ma,
ms, m6 connected to each other and asterisks by elastic
elements with stiffness Cas, Cas, Css, Ce7, and the idle (non-
working) branch is replaced by one mass mg which is
connected to asterisks and guides. Rollers elastic elements
with stiffness Czg and Cgs. The motor shaft is connected to
the input shaft of the gearbox via a power take-off shaft
with a stiffness Cio, and its output shaft is connected via a
resilient safety coupling with a stiffness Cys to the drive
shaft.

M

Fig. 1. Dynamic model of a chain conveyor.

The generalized coordinates of the proposed dynamic
model are: g1 = @1, 02 = @2, 03 = @3 and gz = @7 are the
rotational coordinates of the drive motor rotor, the reduced
mass of the gearbox, the drive shaft and the guide rollers of
the conveyor; s = Xs, 05 = X5, Js = X6 and (s = Xg -
translational coordinates of the respective masses mgs, ms,
me and mg into which the branches of the working and idle
part of the canvas are divided.

To compile the differential equations of motion of the
conveyor, the Lagrange equation of the second kind is used

dd o o k=12,.m; 1)
dtog, g,
where t is the time; L = T-P - Lagrange function; T, P -
kinetic and potential energy of the conveyor; gk - (k = 1,2,
. 8) generalized coordinate of the system; Qx is a
generalized force.

The kinetic energy of the system is represented as the
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where Mj is the driving moment of the motor drive,
reduced to the axis of the drive shaft; F4, Fs, Fe, Fs - forces
of resistance to movement, respectively, the masses ma, ms,
me and mg; D is the diameter of the star.

After substituting the kinetic (2) and potential energy
(3) of the conveyor and the generalized forces (4) in
equation (1) we obtain a system of differential equations of
motion of the conveyor (5):
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These equations can be used to describe dynamic
processes in the elements of the conveyor both in the areas
of transients (start, braking) and in the area of steady
motion.

Different initial motion conditions can be used to
solve equations (5) depending on the section of motion. For
example, the process of starting from the standstill of the
conveyor includes several stages.

The first stage is performed by rotating the mass with
the moment of inertia I1 from the time t = 0 at @1 = 0 and
@1 = 0 to the moment t = t;, at which the elastic force
between the masses |1 and I, with the driving moment M1
is balanced. At this point, the coordinate @1 will reach the
value @11 = M3 / C1o, which will be the initial condition for
the second stage of start-up. At this stage, only the first
equation of system (5) is used, provided that the coordinate
@2 = 0 during the entire period of motion of the first mass.

The second stage - rotating masses 11 and 1, with all
other masses stationary from the time t = t; at @1 = @11, ¢1
= ¢, ¢2 = 0 and ¢z = 0 to the moment t,, at which the
elastic force between the masses I, and |5 is balanced with
driving moment M. At this moment, the coordinate @1 will
reach the value @12, the coordinate @2 = @2, and their
derivatives (|51 = (|512, and q;z = q;zz. Here @12, 922, ([;12, q;zz
are the final values of the coordinates ¢1 and ¢ and their
velocities of the second stage of start-up, which are the
initial conditions of the third stage of start-up. In the second
stage of start-up, a system of the first two differential
equations of system (5) is used. During the entire second
stage of start-up, the coordinate @3 = 0.

Similarly, the initial conditions of motion for all other
masses of the adopted model of the conveyor are
determined. To do this, in addition to the considered stages,

DD
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it is necessary to consider the stages of the beginning of the
movement from the third to the eighth mass. The start-up
process ends at the time when the working line of the
conveyor (masses ms, ms, M) reaches a stable value of the
steady speed.

The operation of chain conveyors is characterized by
the presence of dynamic forces arising from the pulsating
movement of the chain with a steady rotation of the drive
sprocket [6]. At the start-up site, dynamic forces from a
speed increase from zero to a certain constant value are
added to these forces. Under such conditions, the chain
may experience significant alternating dynamic loads,
which as a result of the accumulation of fatigue phenomena
can lead to its premature destruction.

Therefore, the aim of this work is to determine such a
mode of start of the chain conveyor, in which the total
dynamic force in the chain would be minimal.

The total force F acting on the chain consists of a
static component F¢, which is a constant value and does not
depend on the mode of movement of the conveyor and a
dynamic component Fq, which is a variable function
depending on the parameters of the sprocket and chain and
the mode of movement of the drive mechanism.

F=F.+F,. (6)

The static component F¢ includes: 1) resistance on the
supporting rollers; 2) resistance to friction forces in the
supports of the stars; 3) resistance to chain stiffness during
bending. These components of resistance are determined
by known methods [6] and in practical calculations are not
in doubt.

The dynamic component is greater the greater the
length of the chain link and its speed, the smaller the
number of teeth of the drive sprocket and the greater the
moving weight of the load and the conveyor itself. These
loads increase the effort in the traction body and, as a result
of repeated application, cause fatigue in the chains. The
dynamic component of the force in the traction body can
be determined by the dependence [7].

F, = mWL, (7)
where m is the consolidated mass of the moving elements
of the bar conveyor and cargo [7];

W - linear acceleration of the traction body of the
chain.

According to the method described in [7], the
consolidated mass m is determined by the dependence

m=(d, +yo)L ®)
where g, - running weight of the cargo; qo is the running
mass of the moving parts of the conveyor; L is the length
of the conveyor; y is the coefficient of mass reduction,
which takes into account the fact that not the entire mass of
the conveyor moves with the acceleration Wy, and also
takes into account the influence of elasticity and sagging of
the chain.

To determine the acceleration of the chain Wy, consider
the scheme of interaction of the latter with the asterisk
(Fig. 2). Asterisk 5 rotates with an angular velocity ®, and
its circular velocity is determined by a known dependence

V=wR, 9)
where R is the initial radius of the asterisk; o is the angular
velocity of the asterisk.

Then the horizontal component of the chain speed
changes according to the law
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Vi =Vcosp=wRcosy, (10)
here ¢ is the angular coordinate of the rotation of the star
between adjacent teeth, which is calculated from the
bisector of the angle between the teeth and varies from - go
to o, i€ -po<=<@o. The central angle between the teeth can
be determined by the dependence 2o = 21t/z, where z is the
number of teeth of the leading star. Then gpo =1/ z.
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Fig. 2. Circuit conveyor drive scheme: 1 - engine; 2 -
clutch; 3 - reducer; 4 - safety clutch; 5 - sprockets with a
drive shaft; 6 - traction chains; 7 - conveyor belt.

The angular coordinate of the asterisk o is divided into
n sections. At the zero section 0<a<2qo. In this case, -
@o<@<@o. In the first section 2¢@o<0<4po, and - -Qo<E=<o.
In the k-th section, the angular coordinates a and ¢ change
within the following limits

2k po<a=<2(k +1)po, —po<p=<po, k=0, 1, 2, ..., n. (11)

Taking the time derivative of the dependence (10), we
determine the law of change of the linear acceleration of
the chain

W _dv, de do

Rcosgo—wERsingo (12)

T odt dt
If do _
dt
W, = R(Z—?cow —w?sin (oj (13)

The analysis of the dependence (13) shows that to
determine the acceleration of the chain it is necessary to
know the law of motion of the leading sprocket (Fig. 2) in
all areas of motion during the start of the conveyor.

To determine this law of motion, it is necessary to
solve the second problem of the dynamics of conveyor
motion. To do this, in the first approximation, we consider
the pipeline as a dynamic model with a nonlinear position
function (the relationship between the Kkinematic
characteristics of the drive sprocket and the chain is
nonlinear) and one degree of freedom. For the generalized
coordinate we take the coordinate of the rotation of the star
between adjacent teeth on the k-th (k = 0, 1, 2, ...., n)
section of the rotation of the star.

This model does not take into account the elasticity
and sagging of the chain, because they are indirectly taken
into account by the coefficient y in the total mass of the
moving parts of the conveyor, which is determined by the
dependence (9).

We compose the equation of motion of such a
dynamic conveyor model for each section of motion using
the theorem on the change of kinetic energy [8].

T-To:Ap—Ao, (14)
where Ty, T - functions of the kinetic energy of the system
at the beginning of motion and at a certain point in time;
Ap, Ao - work of driving forces of the drive and forces of
resistance to movement of the conveyor on the considered
site of movement.

Dependence functions (14) have the following form:

1 : 1
T0=5|p(—(oo)a)§’ T=§Ip(go)a)2v (15)

A= [Mdp A= TFORCOS(/Jd(p (16)

—%0 4
where, Ip (-9o), Ip (¢) - reduced to the axis of rotation of
the drive star moments of inertia of the moving parts of the
conveyor in the initial position and at any time; o is the
angular velocity of the asterisk in the initial position.

M is the driving moment of the drive, reduced to the
axis of rotation of the drive sprocket; Fo is the total
resistance of the static forces of resistance to the movement
of the web.

Substituting the dependences (15) and (16) in
equation (14) and taking from the left and right parts of this
equality derivatives in the coordinate @, we obtain the law
of motion of the chain conveyor in the form of differential
equations [9]:

|p0'—“’+3wdI p(q))zl(M _F,Reosp) 17
dp 2 de w
I, =1y +mR?cos’ p (18)

where lo is the moment of inertia of the rotor of the engine
1, the clutch 2, the gearbox 3, the elastic clutch 4 and the
drive shaft with sprockets 5 reduced to the axis of rotation
of the sprocket (see Fig. 2).

Equation (17) taking into account the dependence (18)
is a nonlinear differential equation of the first order with
variable coefficients and a complex right-hand side. Such
equations cannot be analytically integrated, so humerical
methods must be used to solve them. To use the finite
difference method [8], equation (17) is presented as
follows

1 1
I p((/))da) + Ewdl p((p)= ;(M — FyRcosg)dep (19)
Divide the conveyor interval —po<e<qo into n parts
and assume that —deo=A¢ = 2¢o/ n on each part. Then the
coordinate @i+ 1 = @; + Ap. Here and - the number of the
position of the drive star, which varies from 0 to n. For any
position of the conveyor ¢ = @i, Ip (¢) =1Ip (i), ® = ©;, M
= M, dly () =Ip (i + 1) -lp (@i). Substituting these
substitutions in equation (19), we obtain (20):
Wy :ﬁ a)ii(Mi - FyRcosg, )A(l’*%[3I p((l’i)* I p((oi+l)]'wi:|
The movement of the conveyor during start-up begins
with the position @i = -@o; while ®; = wo = 0. For this
position, 1p (¢i), lp (i + 1), M; are determined and are
substituted into the dependence (20), from which w; + 1 are
determined. Calculations ®; + 1 are performed until o;
becomes equal to @o. Then the calculations are performed
for the next section of the movement 2@o<o<4¢o with the
repetition of all procedures performed on the previous
section. Moreover, the initial value of the velocity wo in this
section is taken to be the value of the velocity found at the
end point of the previous section, wo = @n.

Conclusions

1. As a result of the solution of the system (5), the
coordinates, velocities and accelerations of each of the
masses are determined for the found initial conditions of
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motion. With the help of these characteristics the dynamic
loads in the elastic elements of the conveyor are
determined. The analysis of these loads will allow to
establish rational inertial and elastic characteristics of the
conveyor and to reach the most favorable mode of the start
of the conveyor.

2. The conducted researches allowed to recommend the
system of the controlled start of the rod conveyor which
gives the chance to reduce considerably dynamic loadings:
coefficient of dynamism in 2.4...2.6 times, coefficient of
unevenness of movement on 10-15%, starting moment - in
1.8...2.2 times.
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JNCKPETHA MOJEJIb JMUHAMIKU PYXY
JJAHIIIOT'OBOI'O KOHBEE€PA
M. M. Kopobko

AHoTauis. Y mporieci mycKy JaHIIOTOBUX KOHBEEPIB
y TATOBiii JaHIi TOJOTHA BUHHUKAIOTH IUHAMIYHI
HABAHTAKCHHS, BEIMYMHA SKHX, TOJOBHUM YHHOM,
3aJICKUTh BiJl HAIJIUIIKOBOI CHII a00 TPUBAJIOCTI MYCKY.
[Mix niero iMImynbCiB, IO CTBOPIOIOTH NPUCKOPEHHS, B
eJIEMEHTaX CUCTEMH BUHUKAIOTh MaJll IPY>KHI KOJIMBaHHSI.
OcraHHi  OPUBOAATH A0  3POCTAHHS  IHEPUIHHHUX
HaBaHTAXXCHb Y MOPIBHAHHI 3 1X cepenHIMU 3HAYCHHIMHY,
SIKI BU3HAYAIOTHCS 3aKOHAMHU PYXY aOCOJIFOTHO TBEPIOTO
Tima. B yMoOBax HEMOCTIHHOCTI IIBHAKOCTEH BCiX abo
JeIKHX €JIEMEHTIB MalllMHH TaKi BENWYNHH, SIK TPUBAIICTh
TepioIiB ITyCKY (posrony) i raJbsMyBaHHS,
NIepeBaHTaKCHHS ABUTYHA 1 Mepeaad, MOKHAa BU3HAYUTH
JUIIC HA OCHOBI JUHAMIYHHX PO3PAaXyHKIB, TPH SKAX
BPaxXOBYETHCS SK HETOCTIHHICTh IIBUAKOCTI ITiJT 9ac pyxy,
Tak W 1HEPUIHHICTh Mac, 10 OepyTh ydacTh y MpoIeci
PyXy.

Takox pobora JIAHIIOTOBUX KOHBEEPIB
XapaKTepU3y€EThCsl HASBHICTIO JUHAMIYHHMX 3YCHJIb, IO
BUHHMKAIOTh y PE3YJIbTATI MyJbCYIOUOI'O PYXy JaHIIOra
Ipu  ycTajeHoMy oOepTaHHI mpuBOJIHOI 3ipouku. Ha
OUIAHII MyCKy A0 [UX 3YCHIb NONAIOTHCS IHHAMIYHI
3YCHIIIS BiJl 3pOCTAaHHS MIBUAKOCTI 3 HYJIbOBOTO 3HAUCHHS
JI0 TIEBHO{ yCTaJIeHOT BEJIMYMHH. 32 TAKMX YMOB Yy JIAHIIIOTY
MOXYTh BHHHKATH 3HAYHI 3HAKO3MIHHI JHHAMIivHi
HaBaHTAXKEHHS, SKi B pe3yJbTaTi HAKONMYEHHS BTOMHUX
SBUII MOXYTh NPHUBECTH O TNEpPeauyacHOro Horo
pyHHYBaHHS.

Y  pob6oTri po3po0iieHO  JUHAMIYHY  MOAEIb
JIAHIIOTOBOTO KOHBEEPA, SIKa BPAaXOBYE OCHOBHHUI pyX i
KOJINBaHHSI €JICMEHTIB MPUBOIY Ta POOOYOro MOJIOTHA.

KuarouoBi ciioBa: xoHBeep, MOzieNb, Maca.

JANCKPETHAS MOJIEJIb IMHAMUWKU ABMXXEHU A
IIETIHOI'O KOHBEMEPA
H. H. Kopobko

AnHoTauus. B npoiecce mycka 1ienHbIX KOHBEHEPOB
B TSITOBOM 3BEHE IIOJIOTHA BO3HHUKAIOT JHHAMHUYECKHUE
Harpy3kd, BEJIMYMHA KOTOPBIX, TJIABHBIM 00pa3oM,
3aBUCHUT OT M30BITOYHON CHIIBI WU TPOAOKUTEIHHOCTH
nycka. Ilog pgeiicTBUeM  HUMITYJBCOB, CO3/JAIOLIUX
YCKOpEHHE, B JJIEMEHTaX CHCTEMBbl BO3HUKAIOT Mallble
ynpyrue konebanus. [locnenHue NPUBOAIT K POCTY
MHEPLMOHHBIX HArpy30K MO CPaBHEHHUIO C UX CPEIHUMU
3HAUEHUSIMU,  KOTOpbIE  ONPENENAIOTCS  3aKOHAMU
JBIDKCHUsT a0CONIOTHO TBEPIOro Tela. B ycrnoBusx
HEMOCTOSIHCTBA  CKOpPOCTEH  BCEX WM  HEKOTOPBIX
3JIEMEHTOB MAaIITHHBI TaKue BEJIUYUHEIL, KakK

MPOJOJDKUTEIIFHOCTS  TIEPUOJIOB  ITycka (pa3roHa) u
TOPMOXKEHHSI, TIEPETPY3KH JBUTATENs U Hepenad, MOKHO
OTIPEICTNTh JINIIb Ha OCHOBE ITUHAMHYECKHX PACUETOB,
MPU KOTOPBIX YIUTHIBACTCS] KAK HEMOCTOSIHCTBO CKOPOCTH
BO BpeMs [BIDKCHHS, TaK W WHEPIMOHHOCTh Macc,
YYaCTBYIOIINX B TPOLIECCE NBIDKCHUS.

Taxoke paboTa IETTHBIX KOHBEHEPOB XapaKTepU3yeTcst
HaJlMYMeM JMHAMHWYECKUX YCWINH, BO3HHKAIOUIMX B
pe3ynbTate MyNbCHPYIOIIErO JABW)KEHHS LENH IpH
YCTaHOBHMBIIEMCS BpallleHWH NPUBOAHOW 3Be3nouku. Ha
yyacTKe TMycKa K OTUM YCHIHMAM  J00aBIIsIOTCS
JMHAMHYECKHE YCHIIMS OT POCTa CKOPOCTU C HYJIEBOTO
3HAUEHUs] [0 OIpPENEICHHONW YCTOSBILEHCS BEIUYUHBI.
IIpm Takmx yCIOBHAX B IIEMM MOTYT BO3HHKATh
3HAYUTEIIbHBIC 3HAKOIICPEMEHHBIE JTMHAMHYECKHE
Harpy3kd, B pE3yJbTaTe HAKOIUICHUS YCTaJIOCTHBIX
SABICHUA MOTYT NPUBECTH K NPEKICBPEMEHHOMY €TO
Ppa3pyIICHHIO.

B pabore paspaborana auHaMu4yeckas MOMEIH
LEMHOT0 KOHBeWepa, KOTOopas YYUTHIBAET OCHOBHOE
JIBIOKCHUE U KOJICOAHUS 3JIEMEHTOB NPUBOJA B pabouero
MOJIOTHA.

KaioueBble ci10Ba: KoHBeliep, MOJeINb, Maca.
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