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CALCULATION MAGNETIC FLUX OF THE PERMANENT MAGNETS IN 

THE SHAPE OF A CYLINDER IN THE PRESENCE OF FERROMAGNETS 

 

A.V. ZHILTSOV, PhD (Tech.) 

V.V. LYKTEJ, postgraduate 

 

Has been solved the problem of calculating the homogeneously magnetized 

permanent magnet, which is disposed between two ferromagnetic bodies of 

cylindrical shape.  

Magnetic flux, permanent magnets, boundary value problem, a ferromagnet 

 

In material was carved  infinitely long cylindrical plane of with radius 3R  

(stator). On its axis has two infinitely long coaxial cylinders with radii 1R  and 2R , at 

that 321 RRR . 

We introduce a cylindrical coordinate system centered at the point O, which is 

located on the axis of the cylinders. Space, which given by the conditions 1Rr  filled 

with ferromagnetic ( ), which given by the conditions 21 RrR  filled with 

permanent magnet with a given magnetization vector J ( reference system is chosen 

in such a way that the vector J  was perpendicular to the plane of), which given by 

the conditions 32 RrR  — material with insight 0 , which given by the conditions  

3Rr  — filled with ferromagnetic ( ). We denote selected areas respectively I, 

II, III, IV. 

The purpose of research — formulation and solution boundary value problem 

of calculating the magnetic field uniformly magnetized permanent magnet cylindrical 

shape in ferromagnetic cavity.  
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Materials and methods of research. The task consists in finding flow Ф of 

magnetic induction B  through the surface of `

3S , which is given by the system of 

equations (in cylindrical coordinate system): 

.10

0

3

z

Rr

      (1) 

Flux of vector B  through `

3S  is defined as follows [3]: 

`
3S
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1. The cross section of the magnetic system 

From which we see the need for knowledge of the field B  of `

3S , or, what is the 

same in III. Without knowing its distribution in region II find it definitely is not given 

possible by the theorem unique solvability of Maxwell's equations [2]. Thus, the 

problem reduces to finding the field B  in the ring 31 RrR . 

To calculate the magnetic induction use Maxwell's equations: 

http://en.wikipedia.org/wiki/Cylindrical_coordinate_system


0Hrot ,      (3) 

0Bdiv ,      (4) 

JHB 00
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From the first equation of the system implies that the vector field H  can 

introduce the scalar magnetic potential  according to the rule: 

gradH .                (6) 

When substitution of (6) in the system of equations (3) - (5), the first of its 

equations is satisfied automatically, and the second equation we obtain the Laplace 

equation: 

0 .      (7) 

Write it for each of regions II and III:  

01  ,            (8) 

02 ,                (9) 

where, 1  — potential in region II,  1  — potential in region III. 

We write the boundary conditions for the scalar potential : 

21  of  2S ,     (10) 

where 2S  - the boundary between two media II and III. 

From the condition of continuity of the normal component of the vector B  on the 

boundary between two media, we have: 

nn BB 32  of 2S ,     (11) 

where nB2 , nB3   — normal component at the border 2S  tends to it, respectively 

from the second and third regions. 

Given the constraint equation (5), as well as the fact that in the region III  

0J , we obtain: 

nn HnJH 30020  of 2S ,    (12) 

where n   — external to the surface 2S  normal. 

From (6), (12) follows the second boundary condition for the scalar magnetic 

potential: 



nJ
nn

12 .     (13) 

Let 1S  - boundary between the media I and II, 3S  - between the media III and 

IV . In regions I and IV consider  , i.e. the magnetic field 1H , 2H  therein is zero:  

041 HH .      (14) 

From the condition of continuity of the tangential component of the vector at 

the interface with different permeability, we have: 

21 HH  of 1S ,     (15) 

43 HH  of 3S .     (16) 

But by (14) and (6) we obtain: 

11 С  of 1S ,     (17) 

22 С  of 3S ,     (18) 

where 1С  and 2С  some constants. 

Consider the plane zOx. It will equipotential because the vector field lines 

penetrate it at right angles. In this way: 

С21  of zOx,     (19) 

where С — a constant that we can take to be zero, ie .: 

021  of zOx.     (20) 

Since the plane zOx intersects the surface 1S  and 3S , then from (17), (18) and 

(20): 

01  of 1S ,     (21) 

02  of 3S .     (22) 

Equations (8) and (9) together with the boundary conditions (10), (13), (21) 

and (22) allow us to unambiguously find scalar potentials 1 , 2 . 

And so we have the following boundary value problem: 

                               01  in  region  II,                      (23) 

02  in region  III,               (24) 

                         21  of 2S ,      (25) 

nJ
nn

12  of 2S ,      (26) 



01  of 1S ,       (27) 

02  of 3S .       (28) 

We solve the equation (23) by the method of separation of variables [4]. In a 

cylindrical coordinate system, equation (23) has the form: 
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Note that the potential 1  does not depend in the present case of z, since its 

distribution is the same in any plane parallel to the plane z = 0. So the last term in the 

left-hand side of equation (29) vanishes. Equation (29) takes the form:  
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The solution of equation (30) will be sought in the form 

rRA1 ,     (31) 

where  A  — depends only on, rR  — only on  r. 

Introducing the intended form of the solution (31) into the original equation 

(30), we obtain after differentiation: 
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Multiplying both sides of equation (32) to 
rRA

r 2

, we obtain: 
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From which we obtain: 

2
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.    (34) 

Left in the equation (34) should function which depends only on r, right – on  

only . Equation (34) is possible only if they are both equal to a constant. 

In this way:  

k
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,     (35) 



k
A

A 2
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,     (36) 

where k  - so far unknown constant.  

Since 1 1, 2 ,r r , then , 2 ,A r A r . In this way:  

'' 0A kA ,      (36) 

we find k n , where n  — whole number, and 

cos sinn n nA a n b n .     (37) 

Further, from (35), assuming that R r r , we obtain: 

2 2n , i.e. n , 0n , and, so 

n n
nR r ar br .     (38) 

When 0n  0k  from (35) we find: 

0 0lnR r С r C .      (39) 

The solution of equation (8) in the area  1 3R r R  under the given boundary 

conditions are looking for in the form of a series: 

1 0 0
1

, ln sin cos sin cosn n
n n n n

n

r a r b r a n b n r a n b n . 

(40) 

Obviously, the solution of equation (9) in the form: 

2 0 0
1

, ln sin cos sin cosn n
n n n n

n

r c r d r c n d n r c n d n . (41) 

The coefficients 0a , 0b , na , nb , na , nb , 0c , 0d , nc , nd , nc , nd , 1,2,3,...n  

determined from the boundary conditions (10), (13), (21), (22). 

From the boundary conditions (10) we obtain: 
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From which it follows: 



0 2 0 0 2 0ln lna R b c R d ,     (42) 

2 2 0n n
n n n nR a c R a c , 1,2,3,...n ,   (43) 

2 2 0n n
n n n nR b d R b d , 1,2,3,...n .   (44) 

From equation (26) we find: 
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From the last equation: 

0 0c a ,       (46) 

1 1
2 2 0n n

n n n nnR c a nR c a , 2,3,4...n ,   (47) 

0 2
2 1 1 2 1 1R c a R c a J ,      (48) 

1 1
2 2 0n n

n n n nnR d b nR d b , 1,2,3,...n    (49) 

Condition (27), (28) can be written, respectively: 

0 1 0 1 1
1

ln sin cos sin cos 0n n
n n n n

n

a R b R a n b n R a n b n , 

0 3 0 3 3
1

ln sin cos sin cos 0n n
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c R d R c n d n R c n d n . 

From which it follows: 

0 1 0ln 0a R b ,       (50) 

1 1 0n n
n nR a R a , 1,2,3...n ,     (51) 

1 1 0n n
n nR b R b , 1,2,3...n ,     (52) 

0 3 0ln 0c R d ,       (53) 

3 3 0n n
n nR c R c , 1,2,3...n ,     (54) 

3 3 0n n
n nR d R d , 1,2,3...n .     (55) 

Solve the system of equations (42) - (55) for n = 0. We have: 



0 2 0 0 2 0ln lna R b c R d ,     (56) 

0 0c a ,       (57) 

0 1 0ln 0a R b ,      (58) 

0 3 0ln 0c R d .      (59) 

Obviously, this system has the correct zero solution, i.e.: 

0 0 0 0 0a b c d . 

If n = 1, then we have a system of equations: 

1
1 1 1 1 0R a R a ,       (60) 

1
3 1 3 1 0R c R c ,       (61) 

1
2 1 1 2 1 1 0R a c R a c ,     (62) 

0 2
2 1 1 2 1 1R c a R c a J ,     (63) 

 

1
1 1 1 1 0R b R b ,       (64) 

1
3 1 3 1 0R d R d ,       (65) 

1
2 1 1 2 1 1 0R b d R b d ,     (66) 

2
1 1 2 1 1 0d b R d b .     (67) 

Add up (66) and (67): 

1 12 0b d , т.е. 1 1b d .    (68) 

Substituting (68) into (66) we obtain: 

1 1b d .      (69) 

Rewrite (64), (65) with (68) and (69): 

1
1 1 1 1 0R b R b ,       (70) 

1
3 1 3 1 0R b R b .       (71) 

The system of linear algebraic equations (70), (71) is homogeneous. Its 

determinant is nonzero. Consequently, it has a trivial (zero) solution. So 



1 1 1 1 0b b d d .     (72) 

olve the system of equations (60) - (63). Subtract from the equation (62), 

equation (63): 

1 1 2a c J .     (73) 

Add up equation (62) and (63), we obtain: 

2
1 1 2 2a c JR .     (74) 

Using (73) and (74) equation (60), (61) can be written: 

1 1 1 1 0R a R a ,      (75) 
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Expressing equation (75) 2
1 1 1a a R  and substituting into equation (76) we 

obtain:  
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Next, 
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From which it follows: 
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Substituting (79) into (75) we find: 

2 2
2 3

1 2 2
1 32

R R
a J

R R
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From the relations (73), (80) we find: 

2 2
2 1
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From the relations (74), (89) we find: 
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Thus, the system (60) - (67) is solved. If n = 2,3,4 ... is to find the coefficients 

in (40) and (41) we have a set of systems of equations 
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Each of the systems (83) - (86) and (87) - (90) can be solved similarly to (64) - 

(67), so that: 

0n n n n n n n na a b b c c d d , n=2,3,4…  (91) 

Substituting the coefficients in (40) and (41) we obtain the expression for the 

potential in regions II and III : 
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Field H  in the desired region III is determined from the expression 

H grad . In the chosen coordinate system: 

rgrad e e
r r

. 

In this way, 
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The magnetic flux through the surface '

3S , which is defined by the system of 

equations (1): 

'
3

0

S

Hds . 

Given that the surface element
3rds e R d dz , find: 
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Whence we find, 
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From (94) it follows that the maximum magnetic flux at fixed radii 
2R , 

3R  is: 

2
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If we introduce the relative values of the equations: 
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then the formula (94) can be rewritten as 

2
210

0 302 2

30 10

1 R
R

R R
.     (97) 

An inner cylinder of the rotor may be made of steel for saving permanent 

magnet. Radius 1R  must be such that the magnetic flux was to close to the maximum. 

This can be achieved by selecting an operating point on the segment AB (in the 

specific case it is necessary to take into account the cost of the magnet and steel). On 

it, the magnetic flux will vary from a maximum of not more than 30%, while the 

1 2R R  lies in the range of 0.6 - 0.9 , i.e. 1 2 20,6 ...0,9R R R .  



 

  2. A plot of the relative radius 
1R  of the magnetic flux in arbitrary units  

 

3. A plot of the magnetic flux 

Findings 

Was solved boundary value problem of calculating the magnetic field of the 

permanent magnet cylindrical shape in the plane ferromagnetic. We obtain an 



expression for the magnetic flux generated by the magnet system, which has allowed 

to establish the limits of variation of the inner radius of the ferromagnetic inserts, 

which are placed on the surface of the permanent magnets of the conditions specified 

deviation of the magnetic flux from its maximum value. 
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