CALCULATION OF THE REGULATOR OF THE CURRENT OF WELDING

M. V. Bragida, J. O. Trimpol

Welding transformers on annular magnets have essential advantages: there are no losses of magnetic energy and mechanical regulators of a welding current; the weight and sizes are reduced.

The purpose of researches - optimisation of parametres of a winding of regulating of a welding current.

Results of researches. External and internal radiuses of an annular magnet it is accepted equal to radiuses of a magnet of the transformer. Resistance of a winding of regulating pays off for the maximum current of welding.

$$\dot{Z} = \frac{\dot{U}_2}{\dot{I}_2} \tag{1}$$

Where U_2 - voltage on the secondary winding of the transformer at the moment of welding, V.Prinimaem $20 \div 25$ In; I_2 - as much as possible accepted current of welding, And.

The maximum current of welding we count behind the formula:

$$\dot{I}_2 = Kd_{\rm en},\tag{2}$$

Where $d_{e\pi}$ - diameter of an electrode, mm;

To - factor that depends on an electrode brand (To = $40 \dots 60$ And/mm,). Cross-section of wire $S_{\text{дp.}}$ We Accept J = 8 A/MM², I = 250 And.

$$S_{\rm ap.} = I/J \tag{3}$$

By pure resistance of windings it is neglected. Then the minimum induced drag it is definable

$$X=\omega L_{\mathrm{Ap}}=rac{\acute{U}_{\mathrm{2}}}{\acute{I}_{\mathrm{2}}}$$
 (4)
$$L_{\mathrm{Ap}}=rac{\acute{U}_{\mathrm{2}}}{\acute{I}_{\mathrm{2}}2\pi f}$$

And inductance

Knowing inductance and parametres became (fig. 1), we define quantity of convolutions. Steel quality we accept 3411 ... 3416, $\mu = 500$... 600.

$$W_{\rm дp} = \sqrt{\frac{L_{\rm дp} 2\pi}{\mu \mu_0 h ln \frac{R_2}{R_1}}} \tag{6}$$

Where h - butterfly governor altitude, m; R_1 , R_2 - internal and external radiuses of the butterfly governor, m.

 $W_{\rm Ap} = \sqrt{\frac{\dot{U}_2}{\mu \mu_0 h \dot{I}_2 f l n \frac{R_2}{R_1}}} \tag{7}$

Or

Fig. 1. A design of a magnet of a winding of regulating

The internal radius of an annular magnet should be such that the winding was located on its round. Should will be executed an inequality

$$2\pi R_1 \ge k_{yK} W_{дp} b. \tag{8}$$

Where $k_{y\kappa}$ - factor that considers gaps $k_{y\kappa} = 1,2$; b - width to a wire, m.