Розрядно-імпульсна система виробництва іскроерозійних порошків металів із високою електропровідністю
Abstract
DISCHARGE PULSE SYSTEM FOR SPARK EROSION POWDERS OF METALS WITH A HIGH ELECTRICAL CONDUCTIVITY
A. Zhiltsov, V. Korobsky, S. Lapshin, G. Grankin
Electric spark technology of nanostructured and ultrafine powders of metals and alloys is currently one of the most effective and can meet the requirements set research and application. Years of research electric-processes, plasma diagnostics channel level, the study of physical phenomena accompanying electric discharge, establishing relationships between electrical parameters and erosion of metals possible to identify them in a separate manufacturing process.
Purpose - to study the mechanisms and study process features electric-dispersing electric conductive materials, and materials for modifying metal alloys.
Materials and methods of research. To realize electric-fusion metal powders that have high electrical conductivity (copper powder, iron, aluminum, etc.) has developed a block diagram of the complex volume electric-conductive dispersing granules, which includes a generator bit of spark impulses bit reaction chamber and technological system. The unit is semiconductor generator conditioners DC and pulse shaper bit, and system management mode generator discharge chamber and technological system.
The reaction chamber in the cross section looks like sand clock oblong shape, length 500mm, consisting of two zones. At the top of the work zone camera has two electrodes. The lower part of the chamber is designed for separation, sedimentation and collection of the resulting material required size. In the area of education pulsed plasma channel layer conductive granules electrical resistance is small in size, depending on the voltage and frequency of bit pulses and nonlinear and stochastic changes.
Materials and research results. For experimental electric-discharge chamber volume dispersion layer conductive granules in the experiments found that the main parameters that influence the dispersion of micro and nano size fractions is a bit contour parameters: capacitance, resistance, inductance and capacitance to voltage.
Thus, in addition to the basic parameters of the discharge range of directly affecting the likely route redistribution of energy options conductive layer, namely, geometry and surface condition, material granules metal (thermal characteristics) and the resistance layer pellets.
Increased capacity C of the capacitor to the value of 300 ... 500 uF not only increases the overall energy of destruction process, but also significantly prolongs the duration of discharge, together with an increase in charging voltage U0 is mainly surface melting granules and formation mikro size fractions with particle sizes 10 ... 500 microns. Reducing the capacity of the capacitor to the value of 25 uF and lower significantly reduces energy level, with practically no evaporation, and the destruction of the surface granules made only by local melting.
Conclusions
1. Developed bit experimental chamber for powder materials allows you to explore undersea features low-voltage discharges. During the experiments revealed that the main factors affecting the dispersion is mikro size fractions discharge circuit parameters: capacity (usually 300 ... 500 uF) resistance, inductance and capacitance to voltage and electrical processes occurring in the discharge chamber.
2. During experimental studies have established the parameters of the discharge circuit to ensure the required dimensions and micro nano size fractions for the manufacture of electric materials.
References
Бабіч І. Л. Спектроскопія плазми електродугового розряду між композитними електродами Ag–Cu / І. Л. Бабіч, В. Ф. Борецький, А. М. Веклич та ін. // Электрические контакты и электроды. – К. : ?н-т пробл. Материаловедения НАН Украины, 2010. – С. 82–115.
Золотых Б. Н. О физической природе электроискровой обработки металлов / Б. Н. Золотых // Электроискровая обработка металлов. – М. : Наука, 1957. – Вып. 1. – С. 38–69.
Лопатько К. Г. Структура та властивості наночастинок, отриманих електроіскровою обробкою міді та срібла / К. Г. Лопатько, Є. Г. Афтанділянц, Я. В. Зауличний, М. В. Капець // Металознавство та обробка металів. – 2009. – № 3. – С. 57–62.
Щерба А. А. Анализ методов повышения эффективности электроэрозионной коагуляции при очистке водных сред / А. А. Щерба,
С. Н. Захарченко, К. Г. Лопатько, Є. Г. Афтанділянц // Технічна електродинаміка. Тематичний випуск. Силова електроніка та енергоефективність. Ч. 2. – 2008. – С. 120–125.
Щерба А. А. Разрядно-импульсные системы производства наноколлоидных растворов биологически активных металлов методом ОЭ?Д / А. А. Щерба, С. Н. Захарченко, К. Г. Лопатько [и др.] // Праці ін.-ту електродинаміки НАН України. – 2010. – Вип. № 26. – С. 152–160.
Downloads
Published
Issue
Section
License
Relationship between right holders and users shall be governed by the terms of the license Creative Commons Attribution – non-commercial – Distribution On Same Conditions 4.0 international (CC BY-NC-SA 4.0):https://creativecommons.org/licenses/by-nc-sa/4.0/deed.uk
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).