Люмінесцентні властивості сульфатів лужних металів
Abstract
UDC 535.37
LUMINESCENT PROPERTIES OF SULFATES OF ALKALINE METALS
V. Boyko, O. Gomenyuk, S. Nedilko
Researches of spectral properties of sulfates of alkaline metals have as scientific and practical interest. Sulfate of potassium К2SO4, is the representative of structure of large group of crystals as А2ВХ4 - the so-called family of sulfate of potassium, that counts more than 300 units. К2SO4 is characterized by high optical transparency, are thermally proof. Such properties allow on their example to study physical processes, that characteristic for the crystals of all family. There are also certain prospects of practical application of crystals of sulfates of alkaline metals.
Aim of researches - to investigate spectral properties such as spectra of absorption, photoluminescence, X-rays luminescence, photo excitation, raman spectra of single crystal and powders of sulfates of alkaline metals. Such researches have not only scientific interest from position of physics of luminescent processes in such materials but also give information on the structure of centers of absorption and radiation in materials that is known for the practical applications. Therefore, this researches are actual and perspective.
Experimental methods and equipments for experimental researches. The single-crystal and powders of sulfates of alkaline metals were investigated. The single-crystals of sulfate of potassium were grown by evaporation from water solution of salt.
Luminescence was investigated at T = 4,2, 77 and 300 К. Standards took place in helium or nitric refrigerators, in liquid helium or nitrogen at the temperature of standards 4,2 or 77 К accordingly. Luminescence was excited by the radiation of laser (wave-length of excitation 337,1 nm) and by the radiation of xenon lamp (area of lengths of waves of excitation of 300 - 650 nm). Spectrums of luminescence at excitation in the areas of a vacuum ultraviolet and spectrums excitation in this area measured at the station of SUPERLUMI to the synchrotron DESY (Hamburg, Germany). The spectrums of luminescence were written down in the range of lengths of waves of 275 - 950 nm spectrums of excitation of luminescence - in the range of 50 - 334 nm at temperatures from 10 К to 300 K.
Conclusions
1. Powders of sulfates of alkaline metals at low temperatures (near 4 K) find out noticeable of luminescence, that practically is not observed at the same terms for corresponding single-crystals.
2. Character of luminescence depends on the terms of heat treatment. Obviously correlation of amount of centers that is responsible for that or other luminescence changes depending on them.
3. Luminescence is related to imperfectness of their structure. Such defects can be sulfate molecular groups as SO, S2O and basic sulfate group of matrix is a sulfate anion of SO4- with a surplus charge.
4. Excitation of centers of luminescence can take place both straight and due to the transfer of energy, or to the charge from the defects of matrix.
References
Гринев Б. В. Оптические монокристаллы сложных оксидных соединений / Гринев Б. В., Дубовик М. Ф., Толмачев А. В. – Х. : ?нститут монокристаллов, 2002. – 265 с.
Blasse G. Luminescent materials. – Amsterdam: Elsiever, 1996. – 214 p.
Крэбс Г. Основы кристаллохимии неорганических соединений /
Г. Крэбс. – М. : Мир, 1971. – 304 с.
Ребане К. К. Элементарная теория колебательной структуры спектров примесных центров кристаллов / К. К. Ребане. – М. : Наука, 1968. – 231 с.
Цященко Ю. П. Статическое и динамическое взаимодействие примесных молекулярных анионов XO (X = Cr, Se, Mo, W) с кристаллическими решетками K2SO4 и Na2SO4 / Ю. П. Цященко, Г. Е. Краснянский, В. М. Запорожец // ФТТ. – 1977. – Т. 19, N 4. – С. 1144–1149.
Структура центров поглощения и люминесценции в кристаллах галоидных солей калия и цезия с примесью тетраэдрических анионов / М. У. Белый, В. В. Бойко, Ю. Д. Глинка и др. // ?зв. АН СССР. Сер. физ. – 1989. – Т. 53, № 9. – С. 1778–1782.
Бойко В. В. ?К-спектры поглощения примесных тетраэдрических анионов в кристаллах CsCI / В. В. Бойко, ?. Я. Кушниренко, Х. К. Максимович // Оптика и спектроскопия. – 1981. – Т. 50, № 6. – С. 778–785.
Бойко В. В. Влияние внешнего окружения на колебательные спектры примесных анионов и в кристаллах КСІ и КВrт / В. В. Бойко,
?. Я. Кушниренко, В. ?. Вайданич // Физика твердого тела (ФТТ). – 1983. –Т. 25, № 3. – С. 861–869.
Бойко В. В. Локальная симметрия примесных анионов в кристаллах CsCI, CsBr, CsI / В. В. Бойко, ?. Я. Кушниренко, В. ?. Вайданич // Журнал Прикладной Спектроскопии (ЖПС). – 1983. – Т. 39, № 6. – C. 803–809.
Бойко В. В. Низкотемпературные ?К спектры высокого разрешения кристаллов КСІ и КВr в области полносимметричного колебания аниона / В. В. Бойко, ?. Я. Кушниренко, В. П. Щербацкий // Оптика и спектроскопия – 1987. – Т. 63, вып. 1. – С. 222 – 224.
Накамото К. ?нфракрасные спектры неорганических и координационных соединений / К. Накамото. – М. : Мир, 1966. – 411 с.
Downloads
Published
Issue
Section
License
Relationship between right holders and users shall be governed by the terms of the license Creative Commons Attribution – non-commercial – Distribution On Same Conditions 4.0 international (CC BY-NC-SA 4.0):https://creativecommons.org/licenses/by-nc-sa/4.0/deed.uk
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).