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Abstract. The article deals with the problem arising
in the construction of a numerical scheme of the first-
order boundary element method for plate theory. During
construction of such a scheme, the initially smooth
boundary of the plate is replaced by a polygonal chain.
Due to this replacement the deviation of the numerical
results from the actual distribution of deflections and
other characteristics is arisen. The reason for this
deviation lies in the so-called Sapondzyan's paradox.
According to it, the deflection of a plate bounded by a
regular polygon does not converge to the deflection of a
circular plate with increasing of the polygon sides
number. In the paper, on the basis of an analytical
consideration of Sapondzyan's problem, the components
of the numerical scheme of the boundary element method,
which are responsible for the mentioned deviation, are
pointed out. The modification of the boundary element
method scheme that allows to eliminate given problem is
presented. This approach is tested on the example of
solving two pairs of problems for elliptical and
rectangular plates. The results of numerical solution of
those problems confirmed the adequacy of the proposed
modification.

Key words: plate theory, deflection,
elements method, Sapondzyan’s paradox.

boundary

Introduction

It should be noted that in modern mechanics, there
are many methods for investigating the propagation of
various types of waves in mechanical systems. The study
of a one-dimensional and quasi-one-dimensional wave
propagation problem in beams and plates led to the
development of a number of analytical methods, among
which we note the transfer matrix method [7]. This
method consists in constructing a matrix, which binds the
dynamic and  kinematic  characteristics. = These
characteristics are used for the definition the constants of
the wave propagation through the eigenvalues of this
matrix. Another approach is variational method [4], which
is based on energy balance ratios and they are the
development of Rayleigh and Rayleigh - Ritz methods.

Also, in the vast majority of cases the finite elements
method is used for numerical calculations [5], [6].
However, the finite elements method can not be
considered as the best complement to analytical methods
in investigating of the phenomena of wave propagations,
in particular, in periodic systems. Since the corresponding
problems are linear boundary problems for the differential
equations (ordinary or partial derivatives), the most
appropriate method for these purposes is the boundary
elements method (BEM). But some nuance can be
occurred when boundary elements method is used for
solving plate theory problems.

A few decades ago one phenomenon was discovered
in the plate theory. Later this phenomenon became known
as the paradox by Sapondzyan. It was sufficiently well
covered in the literature [1].

In this paper we consider static (or classical) case of
corresponding problem. The treatment of this problem for
dynamical case has not any principal distinction.

Formulation of problem

Let us consider the essence of this phenomenon. To
do this, consider the displacements of two simply
supported plates, which are loaded with a constant
bending moment on their borders. The plates have a
difference shape. The first plate is a circular plate of the
unit radius. The second plate is bounded by the regular
N -polygon inscribed in the unit circle.

At first glance, it is logical to assume that due
passage to the limit N — oo, the displacement of these
plates must be coincide. However, calculations show that
the displacements of the N -polygon plate is more small
than the displacements of the round one. This fact is due
to the fact that the simple supported of plates in the
angular points give greater rigidity to the plate. As a
result, the contribution of each angular point is arbitrarily
small, but due to an increasing of their number, the total
contribution aspires to a certain value.
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Purpose of research

Therefore, the paradox by Sapondzyan must be taken
into account when a numerical scheme of the boundary
elements method with linear (the first order) elements is
constructing. Since in such scheme the boundary is
approximated by polygon, the Sapondzyan's paradox can
lead to a violation of one of the postulates of the BEM:
when the number of boundary elements is increasing the
accuracy of the solution should be increasing too. To
clarify this question, let us consider the above formulated
problems.

Research results
As is known, in the case of a smooth boundary of the

plate, the boundary equations system has the form (see for
example [2] or [3]):

w(5)=J(fv*(xé)«v<x>fM*(xé)e<z>+
+0 (w) —w(c. 2V (R)br(e)
ofe)- [ - an( ) ) aﬁ(x'f)em

( W 5 W Y )
b
where X and § — pomts that are lies on the plate

boundary (on contour T'); w — the deflection of the
plate; & — angle of slope of the plate; M and V —
bending moment and efficient shear force in points of the
plate. After solving system (1) its first relations can be
used for determination of deflection within plate. In this
case & is inner point of plate.

It has been known (see for example [2] or [3]) that
the fundamental solution of the equation for the plate

bending has the form:
2

(x 5)_—In r, 2
» x=(xy), &(&n)-

Let us consider an axisymmetric problem for a
circular plate of an unit radius (see Fig.1). This is a case
where T'=S; is unit circle, and w, 8, M, V are

independent of X

where r:‘y(_g

Y11

I'=39)
Fig. 1. The geometry of circular plate.

Without loss generality, we will accept that
& =(R,0). In this case the system of equations (1) can be
presented in the following form:
w(R)= A(R)w +B(R)9 +C(R)M +D(RV ,
OR)=ER)W+F(R)P +GRM +HRN , (3)
where

w=wl), =60, M=M@Q), V=VQ
boundary values of corresponding characteristics. After
simple but cumbersome transformations the coefficients
of system (3) can be founded in the closed form:
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where T — cyllndrlcal stiffness of a plate, v — Poisson’s
ratio. In the order of derivation of A(R) it was used that

Vk)-ak.2)- J(—;f)() ‘®e ©

where Q*(Y(,g) — shear force and M:(Y(E) — torsion
torque.

Using (3) and (4) it would be easy to conclude that
the circular plate is in a state of pure bending.

Let us consider N -angle plate which is corresponds
to using of the direct boundary elements method with the
first order elements to a circular plate. In this case smooth
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boundary is replaced by set of N line segments I'; —
boundary elements:

Fig. 2. The geometry of N -angle plate.

Therefore, it is hoped that
N N
AR)~Y Aj» B(R)~> B (6)
j=1 j=1
and so on. In (6) A; and Bj represents integral from
corresponding expression along I';:
aj R aj .
Aj=-Jv by, Bj=- [m keby; @
-3 -3

where
Vo 2 )0y o M brdi)

M (%), ;)= M5, (55,6, ®)

where X, fj are coordinates of points X and f in the

local coordinate system, which is associated with the j-th
boundary element I'; (see Fig. 3).

)y”? -:Vj

Fig. 3. Local coordinate system associated with T';.

From second relationships in (7) and (8) we can
derive
aj
Bj(fi): ,[ij Xj

,aj

[l ol
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It can be pronouncedly shown that
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as well as
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A completely different type of situation occurs with
coefficient A. Accordantly to first relationships in (7) and
(8) this coefficient can be divided on two parts:
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It is worth mentioning that
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Consequently,
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Relation (12) is the heart of the matter of
Sapondzyan's paradox.
Therefore, replacing the smooth contour by a
polygon adds the component of the shear force, which is

corresponding to the torque, and gives deviation in ending
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result. The comparative analysis of the expressions (10)—
(12) with first expression (4) leads to the following
conclusion: for implementing the numerical scheme of the
direct boundary first-order elements method the shear

force Q*(Y(,E ) must be use instead of efficient shear force
Vi(%.E).

For verification of hypothesis, two problems were
considered for the elliptical and for the square plates. The
elliptical plate has the principal radiuses ' =2y
and the square plate has unit length of side. Poisson’s
ratio of plates material is equal to 0.3. In the first problem
the plates have been simply supported and constant value

of bending moment M=T along boundary was
specified. Also it was assumed that the deflection of plate

along boundary is absent: W=0_ second problem
corresponds similar conditions, but deflection of plate
along boundary was assumed equal constant nonzero
value: w=1.
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Fig. 4. Geometry and calculation points of elliptical
plate.
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Fig. 5. Geometry and calculation points of elliptical
plate.

Since the coefficient v*(x,g) is included in the
equation as coefficient of the term of deflection, in the
case where the deflection is zero at the boundary, it
should not effect on the final result. But in the case when
w = 0 it matters whether we take for the corresponding

coefficient term V*(Y(,E) or term Q*(X,E). The scheme of
boundary element method with term V*(Y(,E) shall be

called full scheme and the scheme with term Q*(X,E) shall

be called short scheme.

For both scheme the results of first problem solving
are identical to within 4 decimals. Such situation takes
place for both plates. These solutions will be considering
as exact solutions of problems.

Table 1. The relative deflection (w(x,y)—-wW) of
elliptical plate.

. second problem
first —
(w=1)
N | X y problem
(W=0) full short

scheme | scheme
1]0.00| 0.00 0.4973 | 0.4261 | 0.4973
2| 0.50 | 0.00 0.4700 | 0.4057 | 0.4700
3| 1.00 | 0.00 0.3860 | 0.3530 | 0.3860
41150 | 0.00 0.2371 | 0.2757 | 0.2371
51 0.00 | 0.25 0.4657 | 0.3991 | 0.4657
6 | 0.50 | 0.25 0.4381 | 0.3772 | 0.4381
7| 1.00 | 0.25 0.3531 | 0.3183 | 0.3531
8| 1.50 | 0.25 0.2024 | 0.2231 | 0.2024
91 0.00 | 0.50 0.3713 | 0.3185 | 0.3714
10 | 0.50 | 0.50 0.3429 | 0.2935 | 0.3429
11 | 1.00 | 0.50 0.2553 | 0.2215 | 0.2553
12 | 1.50 | 0.50 0.0999 | 0.0952 | 0.0999
13 | 0.00 | 0.75 0.2154 | 0.1855 | 0.2154
14 | 0.50 | 0.75 0.1858 | 0.1583 | 0.1858
15| 1.00 | 0.75 0.0947 | 0.0783 | 0.0947

Table 2. The relative deflection (w(x, y)—Ww ) of

square plate
first secong problem
(W=1)
M | X y problem
(W=0) full short
scheme | scheme
1| 0.00 | 0.00 0.0738 | 0.1460 | 0.0738
21 0.10 | 0.00 0.0713 | 0.1412 | 0.0713
310.20| 0.00 0.0635 | 0.1259 | 0.0635
41030 0.00 0.0498 | 0.0975 | 0.0498
51 0.40 | 0.00 0.0291 | 0.0546 | 0.0291
6| 0.10 | 0.10 0.0688 | 0.1370 | 0.0688
710.20 | 0.10 0.0614 | 0.1233 | 0.0614
8 (030 0.10 0.0482 | 0.0969 | 0.0482
9] 0.40 | 0.10 0.0283 | 0.0550 | 0.0283
10 | 0.20 | 0.20 0.0549 | 0.1143 | 0.0549
11 | 0.30 | 0.20 0.0434 | 0.0945 | 0.0434
12 | 0.40 | 0.20 0.0257 | 0.0568 | 0.0257
13 1 0.30 | 0.30 0.0347 | 0.0868 | 0.0347
14 | 0.40 | 0.30 0.0209 | 0.0612 | 0.0209
15 | 0.40 | 0.40 0.0131 | 0.0642 | 0.0131
Conclusions

1. Comparison the results of first and second
problem solving, which are showed in the table 1 and
table 2, lend support to the validity of the hypothesis that
it necessity use shear force Q*(z,g) instead of shear force

V*(X,E) in the numerical scheme of the direct boundary

elements method of first-order.

2. From author’s standpoint, the assumption based
on the consideration of Sapondzyan's paradox had not
been adequately explored in the literature on the method
of boundary elements [2], [3]. Therefore, all of the above
in this article may be a prerequisite for further discussion.
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PO AESKI OCOBJIMBOCTI PEAJIBALIII METOY
T'PAHUYHUX EJEMEHTIB VY TEOPIi 3rMHY
IJIACTUH
A. I'. Kyyenxo, O. I'. Kyyenxo, B. B. Apemenxo

AHoTanisgs. Y poboTi po3risHyTa mpobiema, ska
BUHUKAaE Tpu TMOOYIOBI YHCETBHOI CXEMH METOIy
TPaHMYHUX EJIEMEHTIB IEpIIOr0 TOpSIKYy B Teopil
riactuH. [Ipn noOynoBi Takoi cxeMH MMOYaTKOBO TIJIajKa
TPaHUI TUIACTHHH 3aMiHIOEThCS JamaHoro. [Ipum mpomy
BUHHMKAE  HEBIANOBIIHICTD YHCEIBHUX  PE3YJIBTATIB
JICHOMY PO3MOITY MPOTHHIB Ta IHIINX XapaKTEPUCTHUK.
[TpnunHa naHoi HEBIANOBITHOCTI JIEXKHUTH B, TAK 3BaHOMY,

napamokci CamoHmxksHa. Y BIAMOBIAHICTE IO HBOTO
HPOTUH IUIACTHHK Y  BUIVIAII NPaBHJILHOTO
0araToKyTHHKa HE IparHe 10 IPOTHHY KPYIJIOi IUIACTHHH
npu 30UThIIEHHI KUTBKOCTI CTOpiH OaraTOKyTHHKa. Y
poOOTi BKa3aHI CKIQJOBI YHCEIBHOI CXEMH METOIY
TPAaHUYHUX €JIEMEHTIB, BIANOBITaNbHI 3a 3a3HAYCHY
HEBIJIOBIIHICTE, Ta NpeACTaBIeHa MOIU(DIKALsS CXEMH,
sIKa JJ03BOJISIE YCYHYTH BKazaHy npoOiemy. JlaHuid miaxin
OyB arpoOoBaHM Ha MPUKIaAl PO3B’SI3KY ABOX Map 3a1ad
JUIL  eNMINTUYHOI 1 NPSAMOKYTHOI IulacTuH. YucenbHi
pe3ysnbTaTH PO3B’SI3KY 3a/1ad IO0Ka3ajd aJleKBaTHICTh
3aIPOIIOHOBAHOI CXEMHU.

Kuo4oBi cjioBa: Teopist IUTacCTHH, NMPOTHH, METOJ
TpPaHIYHIX €JIEMEHTIB, mapanokc CamoHKsIHA

O HEKOTOPBIX OCOBEHHOCT X
PEAJIMBALIMU METOJA TPAHUYHBIX
DJIEMEHTOB B TEOPUU U3I'BA TTIJIACTUH

An. I'. Kyyenxo, An. I'. Kyyenxo, B. B. Apemenko

AnHoTanmusi. B cratbe paccMmoTpeHa mpoOiema,
KOTOpasi BO3SHHUKACT IPH MOCTPOCHUU YHCICHHOW CXEMBI
METOJia TPaHUYHBIX 3JCMEHTOB IIEPBOrO TIOPSIKAa B
TEOpUH IUIACTHH. [IpM MOCTPOCHHHM TaKOW CXEMBI
M3HAYANBHO TJaJKas TpaHUlla IUIACTUHBI 3aMEHSETCS
nomanoi. IIpu 3TOM  BO3HHMKAeT HECOOTBETCTBHE
YHCIIEHHBIX pe3yJbpTaToB JCUCTBUTEILHOMY
pacrhpesieNieHli0 MPOrubOB U MPOYUX XAPAKTEPUCTHK.
[MpuunHa JaHHOTO HECOOTBETCTBHUSI JIGKUT B  Tak
Ha3bIBaeMoM Iapazokce CamnoHpksiHa. B cooTBeTcTBUHE C
HUM [poru® TIUJIACTUHBL B BHJAC  MPABUIBLHOIO
MHOTOYTOJIbHHKA HE CTPEMHUThCS K MPOTHOY KPYIJion
IUTACTHHBI ~ MPU  YBEJIHUYCHHHM  KOJIMYECTBA  CTOPOH
MHOTOYrojibHHKa. B pabore ykazaHbl COCTaBIISIOIINE
YHUCJICHHOW CXEMBl METOJa TPAHUYHBIX 3JICMEHTOB,
OTBETCTBEHHBIE 32 OTMEUYCHHOE HECOOTBETCTBHE, U
NpeJICTaBIeHa MOAUGUKAINUS CXEMBbI, IO3BOJISIOIIASL
YCTPaHUTh AaHHYIO Tpobiemy. [laHHBIH moaxonm ObLI
anpoOMPOBaH Ha NpUMEpEe PEIICHHS JABYX Map 3aaad s
SIUTUITAYECKON M MPSIMOYTOJIbHOM iacTuH. YUCIeHHbIE
pe3yJIbTaThl pEIICHUsT 3ajad I[OKa3ald aJeKBaTHOCTh
MPEIOKEHHON CXEMBI.
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