Вплив п’єзоелектричного ефекту на поширення хвиль лемба у пластинах кристалів класу 6mm
Анотація
INFLUENCE OF PIEZOELECTRIC EFFECT ON THE PROPAGATION OF LAMB WAVES IN PLATES OF THE CLASS 6mm CRYSTALS
P. Ilyin
For non-destructive testing of the new materials that obtained in the form of thin layers or plates, ultrasonic Lamb waves are used. The parameters of these waves depend on the elastic properties of the material, especially near the critical frequencies, where there is a strong frequency dispersion of wave velocities. The influence of piezoelectric properties of material on the phase velocity of Lamb waves also increases when approaching the critical frequencies.
The aim of this work was to study the influence of piezoelectric effect on the properties of Lamb waves near cutoff frequencies of the symmetric and antisymmetric modes, in particular their dispersion in crystals of 6mm symmetry.
The propagation of Lamb waves in the direction of the axis of the sixth order in plates of crystals of 6mm symmetry was considered in the presence of the piezoelectric effect. For this case the dispersion equation of Lamb waves, have been obtained previously. These equations are transcendental and in arbitrary cases they can be solved only by numerical methods.
In this work the solution of these equations was carried out near the cut frequencies by analytical methods, approximately. Used the fact that when approaching the cutoff frequency the phase velocity of the corresponding Lamb mode tends to infinity and the wave number in the cutoff frequency region tends to zero. This gave the opportunity to expand trigonometric functions that are included in the dispersion equation, in a Taylorseries in a neighborhood of the cutoff frequencies and to obtain approximate dispersion equations that give the relationship between dimensionless wave number q and dimensionless frequency. For cases q<<1 the coefficients at q and q2 were calculated with the accuracy to terms proportional to the square of the electromechanical coupling coefficient.
The approximate dispersion equations for symmetric and antisymmetric Lamb waves were obtained. From their decision one can see that the antisymmetric modes that exist at a cutoff frequency as the shear wave, and symmetrical modes that exist at a cutoff frequency as the longitudinal waves, due to the piezoelectric effect can exist at frequencies below cutoff frequency and to have oppositely directed phase and group velocities. Previously, these properties of Lamb waves in plates of crystals of 6mm symmetry were not known.
Посилання
Wang L. Group velocity and characteristic wave curves of Lamb waves in composites: Modeling and experiments [Text] / L. Wang, F.G. Yuan // Composites Science and Technology. – 2007. – 67. – Р. 1370–1384.
Demčenko A. Calculation of Lamb waves dispersion curves in multi-layered planar structures [Text] / A. Demčenko, L. Maћeika // Ultragarsas.– 2002. – V. 44, N 3. – P.15–17.
Кузнецов С. В. Волны Лэмба в анизотропных пластинах (обзор) / С. В. Кузнецов // Акустический журнал. – 2014. –Т. 60, № 1. – С. 90–100.
Бурдакова А. В. Влияние пьезоэффекта на распространение волн Лэмба в кристаллах CdS, CdSe и ZnO / А. В. Бурдакова, ?. Я. Кучеров, В. М. Перга // Украинский физический журнал. – 1973. – Т.18, № 6. – С. 965–972.
Коцаренко Н. Я. Электронное затухание и усиление волн Лэмба в пьезополупроводниках / Н. Я. Коцаренко, ?. Я. Кучеров, ?. В. Островский [и др.] // Украинский физический журнал. – 1971. – Т.16, № 10. – С. 1707–1716.
Акустические кристаллы : справочник / [Блистанов А. А., Бондаренко В. С., Переломова Н. В. ? др.] ; под. ред. М. П. Шаскольской. – М. : Наука, 1982. –692 с.
Гринченко В. Т. Гармонические колебания и волны в упругих телах / В. Т. Гринченко, В. В. Мелешко. – К. : Наук. думка, 1981. – 284 с.
Tolstoy I. Wave propagation in elastic plates: low and high mode dispersion [Text] / I. Tolstoy, E. Usdin // The Journal of the Acoustical Society of America. –1957. – Vol. 29, N 1. – P. 37–42.
Бурлий П. В. О возможности существования поперечных обратных волн в пластинах / П. В. Бурлий, П. П. ?льин, ?. Я. Кучеров // Письма в журнал технической физики. –1982. – Т. 8, вып. 9. – С. 568–571.
Завантаження
Опубліковано
Номер
Розділ
Ліцензія
Стосунки між правовласниками і користувачами регулюються на умовах ліцензії Creative Commons Із Зазначенням Авторства – Некомерційна – Поширення На Тих Самих Умовах 4.0 Міжнародна (CC BY-NC-SA 4.0):https://creativecommons.org/licenses/by-nc-sa/4.0/deed.uk
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див.The Effect of Open Access).