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Developed a three-dimensional mathematical model for calculating the current 

density in massive spreading nonferromagnetic elements electromagnetic system to 

reduce or determination of residual stresses in the prototype. 

The electromagnetic field, integral equations, current spreading, electrode 

system. 

 

Let capacity C , charged to voltage 0U , closes the system of series-connected 

inductors L  and N  massive conductors occupying volume 
1

N

q
q

D D , limited smooth 

surface 
1

N

q
q

S S  (Fig. 1).Conductivity materials carry a constant volume of each wire 

and flat respectively 1 , 2 , …, N .  

We assume that in terms of quasi-stationary currents flow [1], ie currents at which 

displacement currents in the dielectric surrounding the conductors can be neglected. 
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The aim – for a given system geometry, electrical characteristics of the 

materials making up the structural elements, electrical connection elements given 

voltage across the capacitor current is found i t  in a circle discharging capacitor 

current density distribution ,Q t  a massive conductors electromagnetic force F t , 

acting on the disk electrode etc. In general, this requires the solution of three-

dimensional boundary value problems for a system of Maxwell's equations in an 

unbounded domain: 

rotH ; 
B

rotE
t

; 0divB ; 0div ; B H ; E . (1) 

Here E  – vector of the electric field, V/m; H  – vector magnetic field A/m; B – 

magnetic induction vector, T;  – vector current density, A / m
3
 (out massive 

conductors must assume that 0 );  – conductivity,, Сm m ;  – absolute 

permeability environment, H / m; t  – time seconds. 

Material and methods research. The system of equations (1), supplemented 

with boundary and initial conditions, formulates initial boundary value problem, the 

solution is reduced electromagnetic modeling process in the system. For 

unambiguous determination of the field to the differential equation (1) should be 

added to the following additional conditions [2]: 

а) continuity of the normal component of the current density on the surface of 

the massive conductors (arising from neglect displacement currents outside and 

inside massive conductors); 

б) continuity of the normal component of induction and tangential component 

of the magnetic field on the surface of the massive conductors S ; 

в)  know the initial distribution of current density 
0

M  for massive 

conductors; 

г) induction ,B M t  tends to zero M  як 21 r .  



  

 

Fig.1. Meridian section of the electrode system with the image of an 

external electric circuit: 

1 - inductor; 2 - aluminum disk; 3 - electrode; 4 - nonferromagnetic plate 

 

Results. Insertion electromagnetic potentials A  and  simplify the original 

system of equations (1). Given that 0divB , define the vector potential: 

 B rot ; (2) 

 0div . (3) 

Substituting (2) into the second equation (1): 

rotE rot
t

 or 0rot E
t

. 



  

The last ratio implies that E
t

 – potential field [2] and for him there is a 

scalar field , that 

 E grad
t

. (4) 

From the relation (4) we obtain the following equation 

 E grad
t

. (5) 

From the first equation of (1) we find 

1 1rotH rot B rot rot , 

that is, 

 
1rot rot . (6) 

Further, considering the last equation (1) we arrive at the equation 

 grad
t

. (7) 

Equation (6), (7) form a system of equations is equivalent to the entire system 

of Maxwell's equations. Equivalence is understood in the following sense: if the field 

, ,  satisfy the equation (6), (7), the magnetic induction B , magnetic field H  

and the electric field E  defined as follows: 

B rot ; 1H B ;  1E  

and in their substitution in Maxwell's equations they satisfy it identically. 

Derive equations to be met potentials A  and . Take into account that the 

medium is linear, isotropic, without hysteresis. Because of the assumptions made, 

from equation (6) we find: 

rotrot . (8) 

According to the ratio of vector analysis 

 rotrota grad diva a , (9) 

record 



  

A grad divA . 

Given (3), we obtain the following equation to determine the vector potential 

 A . (10) 

To determine the scalar potential with (5) we find 

 divE divA div grad
t

. (11) 

Taking into account that 

1
0divE div div  і 0divA , 

get 

0div grad . 

So for the scalar electric potential we obtain the following equation: 

 0 . (12) 

Formulate the boundary value problem for the calculation of the magnetic field 

in the electromagnetic system (Fig. 2): 

 
0 WA , WQ D , (13) 

 0 qA ,
qQ D , 1,2,...,q N , (14) 

 0A , 0Q D , (15) 

where 
W

 – current density in the winding reel WD , A/m
3
; q  – current density 

in the solid conductor 
q

D , A/m 
3
; 1,2,...,q N  (the problem in 3N ); 0D  – all bodies 

external to the electromagnetic system space. 

Boundary conditions for the vector potential on the boundary 
qm

S , 

1,2,..., 1q N , massive bodies are as follows: 

                     , ,Q Qn A n A , , ,Q Qn rotA n rotA , WQ S S , (16) 

where A , A  – thresholds vector potential at the point Q  when approaching it 

in accordance with internal and external parties massive conductor; 
Qn  – outdoor 



  

normal to the boundary q -th massive conductor; S  – border massive conductors, 

20 12 10 13 30S S S S S S  (Fig. 2). 

We write the boundary conditions for scalar electric potential: 

  на S , (17) 

where ,  – value of the scalar electric potential at point Q S , when 

approaching it in accordance with internal and external parties massive conductor 

q
D , 1,2,...q N . 

Then take into account the continuity of the normal component of the current 

density  on the border of massive bodies: 

, ,Q Qn n  на S , 

That is, 

 Q Qn n

Q Q

A A

t n t n
,Q S , (18) 

where 
QnA  (

QnA ) – instantaneous projection vector potential on the outer 

normal 
Qn  at the point Q S , when approaching it from the inner (outer) side of a 

massive conductor 
q

D , 1,2,..., 1q N ; 
Qn  Qn  – normal derivative of 

the scalar electric potential when approaching a point Q S  from the inner (outer) 

side of a massive conductor 
q

D , 1,2,...,q N ; 
Qn  – outer normal to the boundary 

massive conductor 
q

D , 1,2,...,q N ; ,  – conductivity material internal and 

external border areas of concern S , Сm m . 



  

 

Fig.2. electrode system 

 

Thus, we can formulate the boundary value problem for determining the 

magnetic vector potential and scalar electric potential: 

 
0 WA , WQ D ; (19) 

 0 qA ,
qQ D , 1,2,...,q N ; (20) 

 0A , 0Q D ; (21) 

 , ,Q Qn rotA n rotA ,Q S ; (22) 

 , ,Q Qn A n A ,Q S ; (23) 

 0q
,

qQ D , 1,2,3,...,q N ; (24) 

  на S ; (25) 



  

 
1 1

Q

Q

n

n

Q

A

t n
 на

10S ; (26) 

 Q

Q

n

N N n

Q

A

t n
 на

0NS ; (27) 

 
Q Qn n

Q Q

A A

t n t n
,Q S ; (28) 

 0A ; (29) 

where 
10S , 

0NS  – of the boundary 10S , 0NS , which is set to the normal 

component of the current density 
Qn  й 

Qn  (contact in the electromagnetic system, 

which joins the chain consisting of tanks, reels and active resistance). If you know the 

current 
Wi t  in the winding reel WD , then plug the current density in the contact 

10S , 

0NS  is as follows: 

 
10

Q

W

n

i t
t

S
,

0
Q

W

n

N

i t
t

S
. (30) 

Looking vector potential in the form: 

 0 0
, ,

,
4 4

W

W m

M M
D DQM QM

M t M t
A Q t dV dV

r r
, (31) 

satisfying equation (19) - (21) and the boundary conditions (22), (23). Here 

,W M t  – instantaneous current density in the coil WD , А/m
3
; ,m M t  – 

instantaneous current density in a massive conductor mD , 1,2,...,m N , А/m
3
; 

QMr  – 

distance from the point Q  to the point M , м; 7

0 4 10 , H/m. 

Substituting equation (7) expression vector magnetic potential (31), we obtain 

the integral-differential equation (integral for spatial variables, differential time) for 

the density of eddy currents in massive conductors: 

, , ,1
,

W

q W

M M
D Dq QM QM

Q t M t M t
dV grad Q t dV

t r t r
; 

 
qQ D , 1,2,...,q N , (32) 



  

where 
0

4 . 

Magnetic induction vector is given by [2]: 

 0 0

3 3

, , , ,
,

4 4
W

QM W QM

M M
D DQM QM

r M t r M t
B Q t dV dV

r r
. (33) 

To determine the 
qgrad  put internal problem (24) – (28). Solution of equation 

(24) are looking at a potential of a simple layer of electrical charges [3]: 

 

0

,1
,

4
M

QMS

M t
Q t dS

r
, (34) 

where ,Q t  – instantaneous scalar electric potential at point Q ; ,M t  – 

instantaneous density simple layer of electrical charges at the point M  border S . 

Boundary conditions (25) are performed automatically. To satisfy the 

expression (34) boundary condition (28), use the theorem jump normal derivative of 

the simple layer potential [3]: 

 
3

0 0

,, 1
,

2 4

QM Q

M

Q QMS

r nQ t
M t dS

n r
, (35) 

 
3

0 0

,, 1
,

2 4

QM Q

M

Q QMS

r nQ t
M t dS

n r
. (36) 

Thus, we obtain a system of integral equations 

 03

,1
, , 2

2

QnQM Q

M
S QM

Ar n
Q t M t dS

r t
, Q S . (37) 

Substituting equation (37) the expression for the vector potential (31), we 

finally obtain 

0 0

3

, , ,
, ,

2 2

Q QM Q

M M
D SQM QM

M t n r nQ Q
dV Q t M t dS

t r r
 

 
0 0

, ,

2
W

W Q

M
D QM

M t nQ
dV

t r
,Q S , (38) 



  

де Q Q Q Q Q , Q S ; Q , Q  – value 

of conductivity of the material from the inside and the outside of the border S  at the 

point Q S  (normal 
Qn  directed from the inner to the outer region). 

Satisfying expression (34) boundary conditions (26), (27), complementary 

equation (38) the following equations: 

0 0

3

, , ,1
, ,

2 2

Q QM Q

M M
D SQM QM

M t n r n
dV Q t M t dS

t r r
 

 0 0 0

1

, , 2

2 Q

W

W Q

M n
D QM

M t n
dV t

t r
, 

10Q S ; (39) 

0 0

3

, , ,1
, ,

2 2

Q QM Q

M M
D SQM QM

M t n r n
dV Q t M t dS

t r r
 

 0 0 0
, , 2

2 Q

W

W Q

M n
D QM N

M t n
dV t

t r
, 

0NQ S . (40) 

Taking into account that 

3

0

1
,

4

QM

M

QMS

r
grad M t dS

r
, 

write the equation (32) 

as:
3

0 0

, , ,1
,

W

q QM W

M M M
D S Dq QM QM QM

Q t rM t M t
dV M t dS dV

t r r t r
; 

 
qQ D , 1,2,...,q N . (41) 

Thus, the system of integro-differential equations for the density of eddy 

current density and simple layer of electric charges (in the considered electrode 

system (Fig. 2) 3N ). 

3

0 0

, , ,1
,

W

q QM W

M M M
D S Dq QM QM QM

Q t rM t M t
dV M t dS dV

t r r t r
, 

 
qQ D , 1,2,...,q N ; (42) 



  

0 0

3

, , ,
, ,

2 2

Q QM Q

M M
D SQM QM

M t n r nQ Q
dV Q t M t dS

t r r
 

 
0 0

, ,
,

2
W

W Q

M
D QM

M t nQ
dV F Q t

t r
,

10 30Q S S S , (43) 

where 

 

1 3

, если ;

1, если ;

Q Q
Q S

Q QQ

Q S S

 (44) 

 0
10

1

0
30

3

0, если ;

2
, , если ;

2
, если .

Q

Q

n

n

Q S

F Q t t Q S

t Q S

 (45) 

Solve the system of equations (42) - (45) we find the current density in each 

massive conductor through which it is possible to calculate the density of heat 

sources in massive conductors electromagnetic force acting on the disk electrode, and 

so on. 

Conclusions 

Developed a three-dimensional mathematical model to calculate the current 

spreading in nonferromagnetic plate (prototype) while passing through her current 

pulse allows to study the effect of electromagnetic parameters of the system to heat, 

distribution electrodynamic forces in a massive plate close contact with the electrode. 
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Разработано трехмерную математическую модель для расчета 

плотности токов растекания в массивных неферромагнитных элементах 

электромагнитной системы для уменьшения или определения остаточных 

напряжений в опытном образце. 

Электромагнитное поле, интегральные уравнения, токи растекания, 

электродная система. 

 

Developed a three-dimensional mathematical model for the calculation of the 

current densities in the massive spreading of non-ferromagnetic elements of the 

electromagnetic system to reduce or determination of residual stresses in the 

prototype. 

The electromagnetic field, integral equations, spreading currents, the 

electrode system. 


