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A THREE-DIMENSIONAL MATHEMATICAL MODEL OF LOW
CAPACITY TO ELECTROMAGNETIC SYSTEM OF SERIES-CONNECTED
INDUCTORS, ELECTRODES AND NONFERROMAGNETIC PLATE
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Developed a three-dimensional mathematical model for calculating the current
density in massive spreading nonferromagnetic elements electromagnetic system to
reduce or determination of residual stresses in the prototype.

The electromagnetic field, integral equations, current spreading, electrode

system.

Let capacity C, charged to voltage U,, closes the system of series-connected

N
inductors L and N massive conductors occupying volume D=[JD,, limited smooth
g=1

N
surface S=JS, (Fig. 1).Conductivity materials carry a constant volume of each wire
g=1

and flat respectively y,,v,, ..., ¥y -

We assume that in terms of quasi-stationary currents flow [1], ie currents at which

displacement currents in the dielectric surrounding the conductors can be neglected.
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The aim — for a given system geometry, electrical characteristics of the
materials making up the structural elements, electrical connection elements given

voltage across the capacitor current is found it in a circle discharging capacitor
current density distribution & Q,t a massive conductors electromagnetic force F t ,

acting on the disk electrode etc. In general, this requires the solution of three-
dimensional boundary value problems for a system of Maxwell's equations in an

unbounded domain:

rotH=3; rotE:—%; divB=0; divd=0; B=pH ; §=yE. (1)

Here E — vector of the electric field, V/m; H — vector magnetic field A/m; B—

—

magnetic induction vector, T; & — vector current density, A / m® (out massive
conductors must assume that 5=0); y — conductivity, Cm/m; p — absolute

permeability environment, H/ m; t — time seconds.

Material and methods research. The system of equations (1), supplemented
with boundary and initial conditions, formulates initial boundary value problem, the
solution is reduced electromagnetic modeling process in the system. For
unambiguous determination of the field to the differential equation (1) should be
added to the following additional conditions [2]:

a) continuity of the normal component of the current density on the surface of
the massive conductors (arising from neglect displacement currents outside and
inside massive conductors);

0) continuity of the normal component of induction and tangential component

of the magnetic field on the surface of the massive conductors S ;
) know the initial distribution of current density 8° M for massive
conductors;

r) induction B Mt tends to zero M —o0 sx 1/r? .
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Fig.1. Meridian section of the electrode system with the image of an
external electric circuit:

1 - inductor; 2 - aluminum disk; 3 - electrode; 4 - nonferromagnetic plate

Results. Insertion electromagnetic potentials A and ¢ simplify the original
system of equations (1). Given that divB=0, define the vector potential:
B=rotA (2)
divA=0. 3)
Substituting (2) into the second equation (1):

rotE:—QrotA or rot E+6—A =0.
ot ot



The last ratio implies that E+6%A — potential field [2] and for him there is a
scalar field ¢, that
- 0A
E+—=—grade. 4
5 drade (4)
From the relation (4) we obtain the following equation
- 0A
E=———grade. 5
5 drade ()

From the first equation of (1) we find
rotH =rot pB =rot p'rotA =3,
that is,
rot pu'rotA =5 . (6)

Further, considering the last equation (1) we arrive at the equation

5= 2 ygrade. (7)
ot
Equation (6), (7) form a system of equations is equivalent to the entire system
of Maxwell's equations. Equivalence is understood in the following sense: if the field
A, ¢, & satisfy the equation (6), (7), the magnetic induction B, magnetic field H
and the electric field E defined as follows:
B=rotA; H=p'B; E=y%
and in their substitution in Maxwell's equations they satisfy it identically.
Derive equations to be met potentials A and ¢. Take into account that the

medium is linear, isotropic, without hysteresis. Because of the assumptions made,
from equation (6) we find:
rotrotA=ps. (8)
According to the ratio of vector analysis
rotrotd=grad diva —Ad, 9)

record



—AA+grad divA =pd .
Given (3), we obtain the following equation to determine the vector potential
AA=—113. (10)
To determine the scalar potential with (5) we find
divE:-%divA—div grade . (11)

Taking into account that

divE:div£§J=1divS=o idivA=0,
Y)Y

get
div grade =0.
So for the scalar electric potential we obtain the following equation:
Aep=0. (12)
Formulate the boundary value problem for the calculation of the magnetic field

in the electromagnetic system (Fig. 2):

AA:_HQSW ) QE DW ) (13)
AA=—,5,,QeD,,q=12,...N, (14)
AA=0,QeD,, (15)

where 8N — current density in the winding reel D,,, A/m?; Sq — current density
in the solid conductor D, , A/m 3 0=12,..,N (the problemin N =3); D, — all bodies

external to the electromagnetic system space.

Boundary conditions for the vector potential on the boundary S,

g=12,...,N -1, massive bodies are as follows:
[1ig, A |=[ g, A" |, i rotA” <[ i, rotA" |, QesUs,, (16)

where A", A~ — thresholds vector potential at the point Q when approaching it

—

in accordance with internal and external parties massive conductor; fi

b — outdoor



normal to the boundary g-th massive conductor;S — border massive conductors,
S=S,,uS,uS,uS, uS,, (Fig.2).

We write the boundary conditions for scalar electric potential:

¢ =¢ HaS, (17)

where ¢", ¢ — value of the scalar electric potential at point QeS, when
approaching it in accordance with internal and external parties massive conductor
D,, 0=12,..N.

Then take into account the continuity of the normal component of the current

density & on the border of massive bodies:

S+,ﬁQ = S‘,ﬁQ HaS,
That is,
—y* —y" =y -y~ QeS, 18
! ot ! GnQ 4 ot Y anQ Q (18)

where AjQ (AgQ) — instantaneous projection vector potential on the outer

normal N,

L, at the point QeS, when approaching it from the inner (outer) side of a

massive conductor D,, q=12,...,N-1; aq>+/anQ a(p-/anQ — normal derivative of

the scalar electric potential when approaching a point QeS from the inner (outer)

side of a massive conductor D,, q=12,..,N; 7

, — outer normal to the boundary

massive conductor D, g=12,.,N; y", y — conductivity material internal and

external border areas of concern S, Cm/m .
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Fig.2. electrode system

Thus, we can formulate the boundary value problem for determining the

magnetic vector potential and scalar electric potential:

AA=—p1,3,,,QeD,,; (19)
AA=—5,,QeD,,q=12,...,N; (20)
AA=0,QeD,; (21)
[ﬁQ,rotA‘]z[ﬁQ,rotN] ,QeS; (22)
[y, A" | 1,,A" |, QeS;; (23)
Ap,=0,QeD,,q=1,23,...,N; (24)

¢ =¢ Ha$; (25)



oA’ B0t
_Yli_%(f;p :6:Q Hano; (26)

ot Ny
A, o
—Yx 6tQ anQ :5nQ HaS,; (27)
0 op" _OA, oo
- A, o0 e G o (28)
anQ ot 6nQ
Aw =0: (29)

where S, S,, — of the boundary S,, S,,, which is set to the normal

component of the current density 8;Q i 6;Q (contact in the electromagnetic system,

which joins the chain consisting of tanks, reels and active resistance). If you know the

current i, t inthe winding reel D,,, then plug the current density in the contact S,

Sy, Is as follows:

t b, t
5, bt 8 L= (30)
SlO SNO
Looking vector potential in the form:
5, Mt
AQt=te j;dv +H 20 T2 gy, (31)
A,  Tou Ao Iy

satisfying equation (19) - (21) and the boundary conditions (22), (23). Here
& Mt — instantaneous current density in the coil D,, A/m* & M.t

instantaneous current density in a massive conductor D, m=12,..,N, A/m’; fom —

distance from the point Q to the point M , m; p, =4x-10", H/m.
Substituting equation (7) expression vector magnetic potential (31), we obtain

the integral-differential equation (integral for spatial variables, differential time) for

the density of eddy currents in massive conductors:

5, Qi 5 Mt &, Mt
« Q +Q 0 dVM+%gradq) Qt = 0 jaw

'qu 8’[D I’QM ath I’QM
QeD,,q=12,...N (32)

M 7



where A=p,/ 47 .

Magnetic induction vector is given by [2]:

Mt S Mt
BQt=H j[QM B ]dv 4 Ho jMde . (33)
47CqN FQM 471:D rQM

To determine the grade, put internal problem (24) — (28). Solution of equation

(24) are looking at a potential of a simple layer of electrical charges [3]:

o Qt = 1 IG M.t ds,, . (34)

Ame, ¢ fom

where ¢ Q,t — instantaneous scalar electric potential at point Q; o M,t —

instantaneous density simple layer of electrical charges at the point M border S .
Boundary conditions (25) are performed automatically. To satisfy the
expression (34) boundary condition (28), use the theorem jump normal derivative of

the simple layer potential [3]:

B ,'[ ,
% _ °Q fo Mt ele g | (35)
ong 2¢, 471:80 g rQ,vI

i ,'[ ,
o9 _O Q IG M,t —QM ?_ds,, (36)
ong 2¢, 47T80 3 Fou

Thus, we obtain a system of integral equations

n oy
W’Q Y
— j Mt dSM =—2¢,

+

a +Y 215 rQM Y4y

GQt+

(37)

Substituting equation (37) the expression for the vector potential (31), we

finally obtain
SMt A n
X QHots O ¢ " vy +0 Qt 2o g 21 g
27'C 8tD rQM 27[ I‘QM
& Mt .f
_ XQ“Ogoaja” ° 4V, ,QeS, (38)




exQ=7vQ-vy Q /v Q+y Q ,QeS;y Q .,y Q - value
of conductivity of the material from the inside and the outside of the border S at the

point Qe S (normal fi, directed from the inner to the outer region).

Satisfying expression (34) boundary conditions (26), (27), complementary

equation (38) the following equations:

S Mt i i
ot O " v, +cQt+2—jo|v|t fou 2 s, =

27 8’[D I‘QM I‘QM
8, M.t f
_ Ho€y 0 J 6\N Q dVM _ﬁ Qeslo; (39)
21 Otp, Fowm Y,
Y t, [P 0}
Moo O | o dv,,+o Q.t +ijcs Mt QM3 Q ds,, =
27[ 8’[D rQM 27'[5 I’QM
& M.t A
_ Mo O [ a 2 4v,, 2805; t,QeSy,. (40)
2n otg, Fom T

Taking into account that

grado =—

r
jc M,t %dsM :
4re, 3 Iom

write the equation (32)

5 Qi S Mt 8, Mt
as: 2 L0 dv,, - jc Mt o =dS,, jaw dv,, ;
qu otp Tom Ho€os rQM otp, Tom
QeD,,q=12,...N. (41)

Thus, the system of integro-differential equations for the density of eddy
current density and simple layer of electric charges (in the considered electrode
system (Fig. 2) N =3).

5, Qi 5 Mt r 8§, M.t
2 dv,, — 1 o Mt 2%dS, = g jSW dv,, ,
qu otp Tom €y s Tom otp, Tom

Qqu, g=12,..,N ; (42)




—

S Mt i fou M
XQz“ogoaj 24V, +0 Ot +-2 o Mt 2™ g —
x  ota low 2T ¢ oM
&, Mt
_ X QK& 0 I O 24V, —F Qit ,QeSuUS;,US,, (43)

27 8th rQM

y: Q —y: Q , ectu QeS;
x Q=37 Q +y Q (44)

1, ecim QeSS US;;

0, ectu QeS;

FQt = ﬁs;o t, ecnn QeSi; (45)
Y1

205
[ Ys °

t, ecm Qe Sy,

Solve the system of equations (42) - (45) we find the current density in each
massive conductor through which it is possible to calculate the density of heat
sources in massive conductors electromagnetic force acting on the disk electrode, and
SO on.

Conclusions

Developed a three-dimensional mathematical model to calculate the current
spreading in nonferromagnetic plate (prototype) while passing through her current
pulse allows to study the effect of electromagnetic parameters of the system to heat,
distribution electrodynamic forces in a massive plate close contact with the electrode.
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Paspabomano mpexmepuyro mamemamuueckyro Mooenb 01s  pacdema
NJIOMHOCMU MOKO8 DPACMEKAHUs 8 MACCUBHLIX HeDeppOMACHUMHBIX I1eMEeHmax
INEKMPOMACHUMHOU CUCMEMbL Ol YMEHbUleHUs UIU ONnpeoeseHus 0CmamouHblx
HAanpsceHuli 8 ONbIMHOM 00pasye.

AnekmpomazHummuoe noie, UHMeZPAIbHblE YPAGHEHUA, MOKU PACMEKAHUA,

BﬂeKmPOOHtI}l cucmema.

Developed a three-dimensional mathematical model for the calculation of the
current densities in the massive spreading of non-ferromagnetic elements of the
electromagnetic system to reduce or determination of residual stresses in the
prototype.

The electromagnetic field, integral equations, spreading currents, the

electrode system.



