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Definitely polarizability multi-balls. To construct solutions of the problem of 

electrostatics applied translational matrix. Examples of test calculations. 

Polarizability, laminated balls translational matrix. 

 

Determination of polarizability of small particles of arbitrary shape and 

structure is one of the most important stages in the study of the optical properties of 

individual particles or aggregates, and matrix-dispersed systems with inclusions 

[1,3,5,9]. It is known [1] that the applied field induces in him a particle is 

proportional to the dipole moment. For an ideal dipole potential, which is located at 

the origin, we have the expression: 
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where p - the dipole moment, Debye; r - the distance to the observation point, 

m; -meridional angle in a spherical coordinate system degree m - permittivity of the 

medium, dimensionless. 

Dipole moment by definition is of 

0mp   E , 

where 0E - the intensity of electrostatic field, V / m; - polarizability, 

dimensionless. 

For continuous homogeneous dielectric-Ball p waste the potential thatoccurs 

in a uniform field acting along the axis defined by the well-known formula: 

3 1
0 3

1

1
cos ,

2

m
р

m

Ф a E r
r

 

 





 

http://www.docufreezer.com/order


and the dipole moment of ball radius a  is: 
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Comparing the above equations gives the formula for calculating the 

polarizability balls : 
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Thus, the spherical particle polarizability of arbitrary structure is defined as the 

coefficient of the perturbation potential multiplied by 4 . Therefore the problem is to 

find an explicit expression for the potential in each case. 

The purpose of research - development of methods of calculating the 

structural and polarizability uniform spherical particles. 

Materials and methods research. This article presents one of the possible 

approaches to determining the polarizability spherical particles with an arbitrary 

number of layers with the use of so-called translational matrices [2,4,6-13]. 

Translational matrix can transfer boundary conditions on the layer in the layer, and to 

calculate the perturbed potential reservoir of particles they are very comfortable. In 

particular, the electrostatic approximation considered multilayer (concentric) balls. 

Studies. Closed formulas for calculating the polarizability coated bullets 

(bullet-layer) is well known [1], but the problem for multi-ball is much more 

complicated due to the increasing number of equations in the boundary conditions. 

For balls of arbitrary law changes the dielectric function of the radial coordinate 

analytical solutions can be obtained only for particular cases. We suggest rather 

general algorithm for constructing numerical solution taking into account the 

singularity at the beginning of a spherical coordinate system. 

Earlier [4,6] the problem was solved for the electrostatic layered ellipsoid in a 

uniform field. From the solution of this problem can be obtained solution of the 

problem for the world. But because of the importance of the case it makes sense to 

get a bullet solution to the problem for multi-balls directly. In addition, the synthesis 

of solutions to the ball permittivity layers having transversal anisotropy requires 

separate consideration. 



Consider a spherical particle (Fig. 1), which consists of concentric n layers of 

complex dielectric permittivity ε j  and outer radii layers jr  ( 1,2, ,j n - number of 

layers).The ball is in an external electric field oE . The external radius of the layer 

suppose nr a . 

Numbered layers starting from the center, ie the core bullets 1j  ,and for the 

environment - 1j n  .Dielectric constant of the environment is denoted by 1ε εn m  . 

 

Figure 1. Multilayered ball in an electric field 

 

The problem we solve in spherical coordinates , ,r   , associated with the center 

of the world.Electrostatic field potentials in layers denoted by ( , , )j ju u r   , potential 

of the external field – through 0 0 ( , , )u u r   , азбуренийпотенціал, якийвноситькуля, 

через ( , , )p pu u r   . 

All potentials are the solutions of the Laplace equation 
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На поверхні кулі, тобто у випадку, коли j n , conditions will have 

( 1 0n pu u u   ): 
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By conditions (2) - (3) are limited solutions are added at the origin and at 

infinity, ie 

1u    at 0r  і 0pu   at r  .                                               (4) 

Solutions of equations for each layer and the expression for the perturbed 

potential is served in the form of expansions by spherical 

harmonics ( , )lmY   at 2,3,...,j n  
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where, as usual, ( , ) (cos )
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lP   –attached Legendre 

functions.With such a choice of solutions to the conditions (4) are met, because the 

potential in the core bullets made (1) 0lmB  , and for the perturbed potential - ( 1) 0n
lmA   . 

On the surface of a sphere, ie, r a  external potential 0 ( , , )u r    and its partial 

derivatives 0 ( , , ) /u r r    will set some functions 0( , ) ( , , )F u a    , 

0( , ) ( , , ) /G u a r      , which in very general terms can be expanded in a series in 

spherical harmonics 
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where the expansion coefficients are calculated by the formula 
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Substituting the expansions (5) - (6) in terms of interface for each pair of 

indices ,l m  resulting in 1,2,..., 1j n   to systems of algebraic equations of the form: 
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and for j n  system will have 
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However, as indicated ( 1) (1)0, 0.n

lm lmA B    

To find the perturbed potential must have only the constant ( 1)n

lmB  .Extra steel 

expelled from the system through translational matrices. As in [4,6,7] after some 

transformations we obtain an expression for the transition matrix from j  до 

( 1)j  layer 
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j j jl a r     uptoafactor 1j   Vronsky is the determinant 

corresponding solutions computed at the interface layer and the matrix elements are 

defined by the formulas: 
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Translational matrix determined by the product of matrices of transition layers 
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With the use of translation matrix will have 
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potential and then the last layer will be determined by the formula 
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and the boundary condition (2) takes the form: 
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After finding the coefficients for the perturbed potential we obtain the expression: 
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Let us consider a homogeneous field with potential 0 0 0 cos ,u E z E      acting 

along the axis z  . In this case, the expansion potential of the external field, only one 

member 1(cos (cos ), 1, 0),P l m     а 10 0 10 0,f E a g E a    . Accordingly, for the case in 

indexes  1, 0l m   All other potential expansion coefficients rotate to zero. The 

expression for the perturbed potential takes the form (index “ lm ” drop, and also 

denote (1) (1)
11 11 21 21,t t t t  ): 
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Hence we find an expression for calculating the polarizability layered balls 

3 11 21 11 21

11 21 11 21

[ 2 ] [ ]
4

2 [ ] [ 2 ]

n m

m n

t t t t
a

t t t t

 
 

 

  


  
. (15) 

For a solid ball ( 1)n  should take 11 1t  , 21 0t   and then obtain the expression 

above.For balls in the shell ( 2)n  After some transformations we have 
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This expression coincides with the formula given in [1]. 

Here are some results of numerical calculations. Consider a single bimetallic 

spherical particle consisting of a silver core and gold shell. To describe the dielectric 

constant of silver and gold using Drude model: 
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whereω p  – plasma frequency for solid material; γ p  – frequency absorption. The 

calculations assumed that for silver ε 4,5  , 14 1γ 0,24 10p с  , and for gold ε 10,0  , 

14 1γ 0,34 10p с   ( i  – imaginary unit) [1,5,9]. Figure 2 shows the spectral dependence 

of the imaginary part of the dimensionless polarizability 3α* α /(4π )a spherical 

particles of silver core and a gold shell for some values of volumetric filling 

3

1 2( / )f r r  (outer radius of the particle 2a r remained unchanged). For environmental 

values taken permittivity ε 1,7m  .This spectral dependence of the imaginary part of 

the effective dielectric constant is calculated by the formula Maxwell-Garnett: 
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when substituted for it polarizability values found for the bimetallic spherical 

particles (silver core gold shell). 
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Fig.2. The spectral dependence of the imaginary part of the dimensionless 

polarizability )4/( 3*   spherical particles of silver core and a gold shell for 

different values of volumetric filling 3

21 )/(r r : 

1 – 0 (solid gold particle); 2 – 25,0 ; 3 – 5,0 ; 4 – 75,0 ;  

5 – 1  (solid silver particle) 

From the graph (Fig. 2) that the presence of membranes leads to the splitting 

values wavelength surface plasmons. Thus, in the range of wavelengths 

between Arλ =366 нм (wavelength surface plasmons solid silver particles) і Auλ =506 

нм (wavelength surface plasmons solid gold particles) there are two peaks located 

between these boundary values. In this case, the absolute values of the maxima 

significantly reduced. Since the absorption in the electrostatic approximation 



proprotsiyne Imα , a maximum absorption at a particular particle will repeat 

dependencies, shown in Figure 2. 

Conclusions 

The paper presents and practically implemented method of calculating the 

polarizability structurally inhomogeneous spherical particles. Examples of test 

calculations confirm its high efficiency. This opens up the possibility of theoretical 

studies (numerical experiments) to determine how the characteristics of the 

interaction of electromagnetic radiation with individual particles or ensembles, and 

dielectric function matrix-dispersed systems with inclusions. This fact is particularly 

significant in the study of biological objects (cells, bacteria) or the optical dielectric 

spectroscopy models which may be structurally heterogeneous world with regard to 

the dielectric anisotropy. 
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