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These differential equations that describe the motion of discrete-

continuous systems for transient (transient) processes that can be used 
to improve and clarify the existing engineering design procedures of such 
systems. 

Mathematical modeling, discrete-continuous systems, 
optimization of traffic. 

 
Problem. The question of mathematical modeling and optimization 

of mechanical motion discrete-continuous systems and their dynamic 
calculation when passing through resonance discussed in numerous 
papers. This review focused on systems with one degree of freedom 
(within models with lumped parameters), which also enables relatively 
easy to study mechanical systems with a finite number of degrees of 
freedom. Of particular importance of this issue in the analysis of non-
stationary fluctuations deformed mechanical systems (eg, dynamic 
analysis vibroizolovanyh foundations for machines and processes in 
research vibration-wave / vibroudarnoho formation of different mixtures). 

Among the various methods of extinguishing puskozupynnoho 
resonance is known, along with the improvement of conventional 
dampers used dynamic Oscillation; Oscillation calculations require a 
rather complete study of unsteady vibrations 
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mechanical (Deformed) systems (eg, foundations for machines) on the 
basis of the nature of load changes. For quality vibration and forming 
products for agriculture, industry also requires accurate and 
comprehensive analysis of these oscillations / waves generated in the 
"working body vibration - mix". Despite the presence of a number of 
important results obtained in the calculation of passage through 
resonance, simulation and optimization of traffic deformed mechanical 
systems (discrete-continuous type), as reflected in numerous 
publications, many of this theory, simulation, optimization of motion of 
such systems in times start / brake (called transients) require further 
study, refinement and improvement (especially engineering calculation 
methods for loading machines working body or foundation under them). 
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Analysis of recent research. It is known [1-3], the literature is 
very well represented calculation methods based on the use of exact 
solutions expressed in various special functions, as well as modeling and 
optimization of continuum and discrete movements (with lumped 
parameters) mechanical systems based on integrated criteria / action 
functional equations and Poisson Eylera- [4]. 

In the monographs [5, 6] driven a number of results, based on the 
use of probability integrals and functions Lommel two variables; These 
functions are also used in [7], and numerous articles on the subject. 

The purpose of research - View method of mathematical and 
physical-mechanical modeling of discrete-continuous systems based on 
the approaches and means / tools of mathematical physics [1,2], Euler's 
method [3], in addition, to expand changing the frequency and amplitude 
of the forces that cause fluctuations in the start-up mode and stopping 
cars, and in some cases get simple solutions in a relatively well-studied 
functions. The proposed model differential equations for generalized 
coordinates of the mechanical system to optimize its motion modes 
during periods of start / stop, taking into account discrete-continuous 
nature of the parameters of the system, and thus reduce / minimize 
amplitude loadings on the working bodies of machines in these times. 

Results. 
1. Application of Rayleigh analysis of forced vibrations of the 

moving rod ends. Using the approaches developed in [1, 2], we consider 
the forced longitudinal vibrations of the moving rod ends. (Such models 
used in practice analysis and calculations of the interaction of working 
with vibrating machines mixture compacted). This rod has a finite length 
l  and under the influence of an external force ),,( txp  that calculated per 
unit length, and the end was not fixed and moving a given law. This 
problem is reduced to the solution of (one-dimensional setting): 
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where −),( txu  longitudinal shift rod cross-section, depending on the 
(longitudinal) coordinates ,x  nondeformed chosen along the axis (rod) 

−t time −ρ density, −a  speed of propagation of longitudinal waves in 

rods, and ,
ρ
Ea =  where −E  modulus of elasticity of the material of the 

rod. 
Boundary conditions are as follows: 

),();( 210 tutu lxx κκ == ==        (2) 
and primary are as follows:  
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It is known [2] that the solution to this problem can not be applied 
Fourier method, because the boundary conditions (2) uniform. But this 
problem is easily reduced to the problem with zero boundary conditions 
(which use the Fourier method is correct). 

Decision ),( txu look in the following way:  
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Function ),( txv must satisfy the boundary conditions:  
0,00 == == lxx vv         (5) 

and initial conditions: 
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(This means a single bar for differentiation t ). The equation which 
satisfies ),,( txv takes the form: 
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The solution of equation (7) can be represented as follows: 
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The general solution of (4) can be written as: 
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Introduce notation:  
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then:  
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Given (11), can (9) present in the form: 
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xktgtxu π  where )(~ tgk  equivalent / identical 

expression, standing in the square brackets of formula (12) during 
summation. 

According to Euler's method [3], inertial coefficient ,1m  stiffness 
1C and natural frequency 1Ω  core (as continual system) are determined 

by the following equation: 
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where −)(xS  describes the variation along the axis Ox  core area of its 
cross section. In consideration of viscous forces in the material core 
factor 1n Characterizing the specified friction can be represented as 
follows: 
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where )(~
1 xn  describes the intensity distribution (per unit length) 

along the axis of the rod its viscous properties. 
The following table shows the criteria for classifying basic types of 

core models applied in engineering calculations. 
 
1. Criteria for the classification of discrete and continuum 

properties of standard models rods. 

l/λ  Type (medium) 
model 

Viscous 
11Ωn ~ 

( 2
1; Ωmc ) 

);( 2
111 Ω<<Ω mcn  

l/λ ~ 1)/( >>Ωla  Discrete + - 
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l/λ ~ 1)/( <<Ωla  Path + - 
l/λ ~ 1)/( ≈Ωla  Discrete-

continuous + - 

Note. The "+" means that the model should be considered core 
linear viscous friction; "-" sign means that the core model is used that 
does not account for dissipative processes. −λ  wavelength propagating 
in the core. 

2. continual optimization of motion systems. According to the 
equation of motion (1), the most common option for setting initial-
boundary value problem (2), (3) mentioned above, the solution methods 
of mathematical physics [1,2], which can be written as: 
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Due to orthogonality of functions )(xX k  in the interval ],,0[ lx ∈  You 
can easily get (substituting (15) in (1) and integrating multiplied by )(xX k  
the equation in the range from 0 to l ) For the amplitude −k third 
harmonic solution (15): 
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Then (16) represented as: 
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We consider the motion of a period of time ],;0[ ptt ∈  where −pt the 
duration of the transition process, after which the dynamic / kinematic 
system parameters (power, acceleration, velocity, displacement) are 
stabilized. Define the equations that determine the modes of the system 
and at the same time satisfy the following criteria: 

a) minimize acceleration: 
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b) minimize movement: 
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c) minimizing the external forces that affect the system as a whole: 
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Using equation (17) and the approach developed in [4], it is easy to 
obtain the following equation: 

a) performance criterion (18): 
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b) to fulfill the criterion (19) - 
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c) to fulfill the criterion (20) - 
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The equations (22), (23) can easily integrate specific (Greatest 

common) initial conditions. 
Conclusions 

1. The differential equations describing the motion of discrete-
continuous systems for transient (transient) processes provided the 
optimization of dynamic / kinematic characteristics. 

2. The studies can be used to further improve and refine existing 
engineering calculation methods such systems, simulated, including rods 
with distributed parameters. 
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Pryvedenы dyfferentsyalnыe equation, kotorыe opysыvayut motion 
kontynualnыh discrete systems techenyy neustanovyvshyhsya 
(perekhodnykh) processes, kotorыe mogut bыt in dalnejshem 
yspolzovanы for Improvement and utochnenyya suschestvuyuschyh 
ynzhenernыh calculation methods podobnыh systems. 

Mathematical modulyrovanye, kontynualnыe discrete 
systems, optimization regimes movement. 

 
 
Differential equations which describe movement of discrete-

continual systems during unsteady (transitional) processes are 
presented. One may use these equations for improvement and 
clarification of existing engineering techniques and for analysis of such 
systems, as well. 

Mathematical simulation, discrete-continual systems, 
optimization of motion regimes. 
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The article analyzes the methods of control for kneading, the basic 
factors that affect the process tistoutvorennya. A mathematical model of 
kneading, and new design solutions for kneading machines that will 
intensify the process of mixing and increase the quality test. 

The process of kneading, the dough moisture, 
tistoutvorennya, quality control procedures dough, dough making 
machine working chamber, rate heterogeneity plasticizing test. 
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