Анализ неравновесных макросистем и самоорганизация эволюции
Анотація
UDC 536.42:621.07
The analysis of nonequilibrium macrosystems AND EVOLUTION SELF-ORGANIZATION
B. Draganov, V. Kozyrsky
Nonlocal transformation, the transition from time-reversible description of a probability, leads to non-local description in space and in time. This non-locality avoids instabilities inherent dynamic description, and leads to a description, allowing to achieve the delicate balance that we have seen in many areas of science.
The purpose of research - to analyze the laws of irreversible processes, the concept of temporary space, the conditions of self-organization.
Materials and methods. A remarkable feature of our approach is that it allows you to give the space-time structure, defined place in the spatial continuum of irreversible processes.
Ignorant, we are aware of the existence of "arrow of time", ie, entropy, in our own lives. In addition, biology introduced us to the evolutionary paradigm. In connection with the identification of the fundamental role of the concept of irreversibility Prigogine considers deeper approach to the concept of time. If in classical mechanics time is included as a parameter in the theory of irreversible processes appear "a second time", which is closely associated with fluktuatsiyamymi processes - in macroscopic processes. This new time is no more than a simple option, as the time in the classical or quantum mechanics. The second time - probably operator, like the operators corresponding to different values in quantum mechanics.
Elementary particles are complex objects that can be created and undergo decay. If the physics and chemistry somewhere and there is easy, certainly not in microscopic models. Rather, it lies in the idealized macroscopic representations, for example, simple movements such as harmonic oscillator or the two-body problem. But it is necessary to use such models to describe the behavior of large or very small systems, simplicity is not based.
Interactions between different systems of nature leads to spatial, temporal structures in the macroscopic scale. Of special interest are situations when they arise as a result of self-organization. This applies to the field of research, called synergy, which is engaged in the study of systems of different nature, such as electrons, atoms, molecules, cells, neutrons, mechanical elements, photons, organs, animals and humans.
The process of self-organization should be viewed as a sequence of nonequilibrium phase transitions. Transitions occur when the value of one or more managers - bifurcation - parameters. Although it was natural to assume that in the process of self-organization of the system entropy decreases, until recently, however, this has not been confirmed by calculations and thus the question remained virtually open. The main attention was paid to another problem - the problem of "dynamic chaos" arising in the course of evolution in dynamic systems, etc. stock volatility. This occurs when the movement becomes so complex that the use of the concept of path becomes difficult, and statistical methods are more effective to describe the movement.
The concept of "dynamic chaos" is widely used at present in the theory of turbulence with hydrodynamic flows, as well as in the description of complex movements in a relatively simple radio physical systems. The transition from laminar to turbulent flow is seen more as a transition to a more chaotic, a random motion, Che as a process of self-organization.
On this basis, it formulated the S-theorem.
It should be noted that the irreversible processes are as real as reversible. Irreversible processes play an important constructive role in the physical world, they are the basis of coherent processes. Irreversible strongly associated with dynamic phenomena.
The results of research. Such an approach to the phenomena analyzed to provide a deeper analysis of the relationship between physics and biology, and to determine the conditions of transition from one level to another.
The increment of entropy dS is necessary to distinguish between the two terms: the first describes the deS transfer entropy through the system boundary, the second entropy diS is generated in the system. According to the second entropy production within the system positively.
In this formulation becomes essential basic distinction between reversible and irreversible processes. Contributing to the production of entropy is given only irreversible processes. Examples of processes may be irreversible chemical reaction, the thermal conductivity m diffusion. On the other hand, may correspond to reversible processes will spread in the limit where the absorption will be negligibly small. Thus, the second law of thermodynamics states that, irreversible processes lead to a kind of one-sidedness of the time: the time the positive direction of the second law binds with an increase in entropy. It should be emphasized so strongly and uniquely manifested sidedness of time beginning in the second. It postulates the existence of a function with very specific properties, such that in an isolated system, this function can only increase with time. Such functions play an important role in a timely stability theory.
In addition to the fall of the equilibrium state of the system organizes itself, ie, It passes through a series of more ordered states and entropy decreases.
Сonclusions
Irreversible processes lead to a kind of one-sidedness of the time - the positive direction of the time based on the second law of thermodynamics is associated with an increase in entropy.
The process of self-organization, hara5kterny evolution, characterized by a decrease in entropy. The increment of entropy dS should distinguish between two terms: the first describes the deS transfer entropy through the system boundary, the second entropy diS is generated in the system.
Посилання
Пригожин ?. Введение в термодинамику необратимых процессов / ?. Пригожин. – М. : ?Л, 1961.
Пригожин ?. От существующего к возникающему. Время и сложность физических наук / ?. Пригожин. – М. : Дом Книга, 1980. – 226 с.
Хакен Г. Синергетика. ?ерархии неустойчивостей в самоорганизующихся системах и устройствах : пер. с англ. / Г. Хакен. – М. : Мир, 1988. – 423 с.
Заславский Г. М. Стохастичность динамических систем / Г. М. Заславский. – М. : Наука, 1984.
Пригожин ?. Термодинамическая теория структуры, устойчивости и флуктуации / ?. Пригожин. – М. : УРСС, 2003.
Монин Р. С. О природе турбулентности / Р. С. Монин // УФН. – 1948. – Т. 123. – С. 97.
Гидродинамическая неустойчивость и переход к турбулентности / под ред. Х. Суини и Дж. Голаба. – М. : Мир, 1984.
Климонтович Ю. Л. ?зменение энтропии в процессах самоорганизации. S- теорема (на примере перехода через порог генерации) / Ю. Л. Климонтович // Письма в ЖТФ. – 1983. – С. 412.
Завантаження
Опубліковано
Номер
Розділ
Ліцензія
Стосунки між правовласниками і користувачами регулюються на умовах ліцензії Creative Commons Із Зазначенням Авторства – Некомерційна – Поширення На Тих Самих Умовах 4.0 Міжнародна (CC BY-NC-SA 4.0):https://creativecommons.org/licenses/by-nc-sa/4.0/deed.uk
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див.The Effect of Open Access).