Дослідження фотосинтезної опроміненості в програмному середовищі Mathcad

Автор(и)

  • Л. С. Червінський
  • Я. М. Луцак

Анотація

DETERMINATION OF SPATIAL PHOTOSYNTHESIS IRRADIATED IN A SOFTWARE ENVIRONMENT MATHCAD
L. Cherwinsky, J. Lutsak 
 
When calculating the light and exposure in production facilities in the country are the most common methods of utilization of light flux (KVSP), point method (TM) method and specific power (MPP). These proven techniques have several drawbacks. KVSP method gives indirect illumination value (exposure) only on the horizontal work surface; TM does not include optical radiation flux reflection from walls and ceilings; WFP used for approximate calculation.
There are more sophisticated modern methods of calculating coverage in the media software DIALux, Relux Professional, Lightscape, Calculux and EUROPIC.
 A common drawback of these computer programs is the lack of convenient means of photometric data. For each project to create a database of the applied lamps, which complicates and slows down.
The proposed method of determining the photosynthesis exposure in the software environment Mathcad to determine the real value of the horizontal exposure at a given level allowing for the reflection coefficient photosynthesis radiation surfaces of the side walls and the inner surface of the roof of the greenhouse space as a function of spatial coordinates.
 The use of this method in comparison with known methods of determining exposure to a given surface, the design Irradiation systems will reduce power consumption by using less power sources and will enable a more efficient automatic control of a given level of photosynthesis exposure in the process of growing plants.
 
 
 

Посилання

V. A. Vergunov, I. N. Vergunova, V. S. Shkrabak (2003) Osnovy mathematichescogo modelirovaniya: Dla analiza i prignoza agronomicheskih prosesov [Basics of mathematical modeling: To analyze and forecast economic processes]. SPb.:SPbGAU, 219.

P. Dehof, D. Zembort. (1994) Avtomatisirovanoe proektirovanie vnutrennego osvecheniya [Automated design of of indoor lighting]. Lighting engineering. M: VNISI, 2, 3-5.

Dg. Embreht (1998) Analiticheskoe rechenie prostoy zadatchi iskusstvennogo osvezheniya dla testirovania program rascheta osvezhenia [Analytic solution of a simple problem of artificial lighting for testing lighting calculation programs]. Lighting engineering. M: VNISI, 5, 15-17.

H. Kruger, S. Fliayter, K. Chirsh. (1999) Novie podhodi k sovmestnomu proektirovaniyu estestvennogo i iskusstvennogo sveta. [New approaches to the joint design of natural and artificial light] Lighting engineering. M: VNISI, 3, 15-17.

A. A. Tihomirov, V. P. Charupich, G. M. Lisovsky (2000) Svetokultura rasteniy. [Plant photoculture]. Novosibirsk .: Publishing house SB RAS, 321.

L. S. Chervinsky, L. O. Storoghuk (2013) Elektrichne osvitlennia ta oprominennia. [Electrical lighting and exposure]. Kyiv, Ukraine .: Publishing House "Agrar Media Group", 214.

L. S. Chervinsky, S. M. Usenko, T. S.Knighka (2016) Method viznashennia prostorovoi oprominenisti. [The method of determining the space exposure]. Technical electrodynamics. Kiyv, Ukraine, 5, 88-90.

The Lighting Handbook (2013) Zumtobel Lighting GmbH , 4th edition, revised and updated. AUSTRIA, 259.

Завантаження

Опубліковано

2017-02-27

Номер

Розділ

Статті