Діелектричні втрати в матричних дисперсних системах із двошаровими включеннями в наближенні Максвелл-Гарнетта

Автор(и)

  • С. В. Шостак

Анотація

DIELECTRIC  LOSSES  IN  THE  MATRIX  DISPERSED SYSTEMS WITH TWO-LAYERED INCLUSIONS IN THE MAXWELL-GARNETT APPROXIMATION

S. Shostak

 

Calculated dielectric losses in the matrix dispersed systems with two-layer spherical inclusions. In the approximation of Maxwell-Garnett made a detailed analysis of the dependence of the effective permittivity as the frequency of the external field and the parameters of the system.

Research dielectric loss (DL) in the matrix dispersed systems (MDS) devoted a significant amount. In some of these studies investigated the frequency dependence of the real and imaginary parts of the effective dielectric constant of such systems, depending on their physical and chemical characteristics, mostly studied (MDS) with a dielectric matrix with inclusions of different shapes and nature.

The main task in finding DL in MDS  is the calculation of frequency dependence of the imaginary part of the effective dielectric constant in such systems based on their composition and structure and further calculating the value DL by the formula ,  where  і  - Fourier components and  external fields, but also  і - according imaginary part of the effective permittivity and magnetic permeability MDS.

         The purpose of research - calculation frequency dependence of the effective dielectric constant for MDS with double-layer spherical inclusions with leading anisotropic film.

The paper used mechanisms and patterns of absorption and scattering of electromagnetic radiation with double-layer spherical inclusions.

Methods for calculating the absorption of electromagnetic radiation in the matrix dispersed systems (MDS) with the multilayered inclusions (in our case, dual-layer) we will demonstrate in following the model system: two-layer spherical particles with a film of adsorbed water thick, placed in the matrix with a  certain dielectric constant. It is known that the absorption of electromagnetic radiation in systems of this type are well defined imaginary part of the effective dielectric constant of the system.

The analytical dependence of the effective dielectric constant of system parameters: the relative contribution of the water in a separate colloidal silica particle and the degree of filling, completely solve the problem of dielectric losses of disperse systems.

Посилання

Chelidze, T. L., Derevyanko, А. I., Kurilenko, O. D. (1977). Elektricheskaya spektroskopiya geterogennykh sistem [Electrical spectroscopy of heterogeneous systems]. Kyiv: Naukova dumka, 1977, 232.

Felderhof, B. U., Ford, G. W. and Cohen, E. G. D. (1982). Cluster expansion for the dielectric constant of a polarizable suspension. J. Stat. Phys., 28 (1), 135-164.

Dzhekson, Dzh. (1965). Klassicheskaya elektrodinamika. Moskva: Mir, 720.

Grechko, L. G., Pustovit, V. N., Shostak, S. V. (1999). Influence of particle multipole interaction on the absorbtion spectra of radiation in the metallic composites. Pros. SPIE, 3890, 391-397.

Shostak, C. V., Vodop’ianov, D. L., Hrechko, L. H. (2002). Dielektrychni vtraty v matrychnykh dyspersnykh systemakh [Dielectric loss in matrix dispersed systems]. Visnyk Kyivskoho Universytetu, seriia: fizyko-matematychni nauky, 1, 412-420.

Grechko, L. G., Motrich, V. V., Ogenko, V. M. (1993). Dielektricheskaya pronitsayemost’ dispersnykh sistem [The dielectric permittivity of disperse systems]. KHimiya, fizika i tekhnologiya poverkhnosti, 1, 17-36.

Prishivalko, А. P., Babenko, А. P., Kuz’min, V. N. (1984). Rasseyaniya i pogloshcheniye sveta neodnorodnymi i anizatropnymi sfericheskimi chastitsami [Scattering and absorption of light by the anisotropic and inhomogeneous spherical particles]. Minsk: Nauka i tekhnika, 263.

Grechko, L. G., Zarko, V. I., Motrich, V. V., Chuyko, А. А. (1988). Dielektricheskaya pronitsayemost’ geterogennykh sistem [The dielectric constant of heterogeneous systems]. Teor. i eksper. Khimiya, 24 (5), 619-622.

Завантаження

Опубліковано

2017-02-27

Номер

Розділ

Статті