Study of the effect of electric fields on plants

Authors

  • D. Khort Federal Scientific Agroengineering Center VIM
  • R. Filippov Federal Scientific Agroengineering Center VIM
  • A. Kutyrev Federal Scientific Agroengineering Center VIM

DOI:

https://doi.org/10.31548/energiya2019.05.042

Abstract

Abstract. The aim of the study was to analyze the effect of electric and magnetic fields on plants and to identify ranges of effective exposure parameters.The article presents the results of the analysis of the influence of electric and magnetic fields on plants. The reactions of plants to weak and strong electric fields are given. Ranges of effective parameters of MP influence on plants are revealed. The analysis of the conducted researches of scientists has shown that the electromagnetic field should be considered as an abiotic activator for influence on plants, thus weak magnetic fields generally have positive influence. As a result of electromagnetic field influence on plants, germination and seed germination energy, linear parameters of roots and sprouts, live and dry mass of plants, leaf area, number of branches, chlorophyll content and yield are increased. The biological effect of the application of electromagnetic fields depends significantly on the direction of the vector, amplitude, frequency, shape and number of magnetic pulses (exposure time), as well as on the culture and variety of plants.Research in the use of electric and magnetic fields is of not only scientific and technical interest, but also of practical importance due to the possibility of using them to increase crop yields on the one hand and reduce the chemical load on the agroecosystem due to the failure or minimization of pre-sowing seed dressing and increasing the biological value of grain , fodder and vegetable raw materials.Key words: electrophysical effects, electromagnetic field, stimulation of plant growth, abiotic factors

References

Krasnogorskaya, N. V. (1984). Electromagnetic fields in the biosphere. Electromagnetic fields in the earth's atmosphere and their biological significance. M?????: Science, 1, 376.

Presman, A. S. (1968). Electromagnetic fields and living nature. Moscow: Science, 288.

Krasnogorskaya, N. V. (1984). Electromagnetic fields in the biosphere. Electromagnetic fields in the earth's atmosphere and their biological significance. M?????: Science,. 1, 376.

Kholodov, Yu. (1975). A. reactions of the nervous system to electromagnetic fields. Moskow: Science, 207.

Pavlovich, N. V, Pavlovich, S. A., Pavlovich, Yu..(1991). Biomagnetic rhythms. Minsk: Universitetskoe, 136.

Bogatina, N. I., Verkin, B. I., Kordyum, V. A. (1978). The Influence of constant magnetic fields of different directions on the growth rate of wheat seedlings. Reports of the USSR Academy of Sciences. Series: Biological, 4, 353-357.

Khokhlova, N. Yu., Trufanov, L. A., Ovchinnikov, E. L., Terekhova, I. V. (1998). Clinical aspects of the use of the inhibitory phase of a constant magnetic field. Proceedings of the Fourth vseros. sci.- prakt. confer. by quantum Ter. Moskow: PKP GIT, 29.

Anastasova, L. P. (1999). Plants and the environment. Moscow: RINO, 127.

Kozyrsky V. V., Savchenko, V. V., Sinyavsky A. Yu. (2017). The Influence of pre-sowing treatment in a magnetic field on the sowing qualities of seeds of agricultural crops. Vestnik Resch, 2 (27), 132-136.

Gotlieb, N. D., Caldwell, W. E. (1967). Magnetic Field effects on the compass mechanism and activity level of the snail Helisoma duryiediscus. J. Genetic Psychology, 11, First half, 85.

https://doi.org/10.1080/00221325.1967.10533750

Palmer, J. D. (1963). Organizational spatial orientation is very weak magnetic fields. Nature,. 4885, 1061.

https://doi.org/10.1038/1981061a0

Pang, X. F., Deng, B. (2008). Investigation of chang es in properties of water under the action of a magnetic field. Sci. China, Ser. G-Phys. Mech., 1621-1632.

https://doi.org/10.1007/s11433-008-0182-7

Vashisth, A., Nagarajan, S. (2015). Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. J. Plant Physiol, 167, 149-156.

https://doi.org/10.1016/j.jplph.2009.08.011

Jaleel, C. A., Gopi, R., Manivannan, P., . Gomathinayagam, M., Murali, P. V., Panneerselvam, R. {2008). Soil applied propiconazole alleviates the impact of salinity on Catharanthus roseus by improving antioxidant status. Pestic. Biochem. Phys., 90, 135-139.

https://doi.org/10.1016/j.pestbp.2007.11.003

Smith, S. D., Mcleod, B. R., Liboff, A. R. (1993). Effects of CR-tuned 60 Hz magnetic fields on sprouting and early growth of Raphanus sativus. Bioelectrochem Bioenerg, 32, 67-76.

https://doi.org/10.1016/0302-4598(93)80021-L

Zhang, H., Hashinaga F. (1997). Effect of high electric fields on the germination and early growth of some vegetable seeds. J. Jpn. Soc. Hort. Sci., 66, 347-352.

https://doi.org/10.2503/jjshs.66.347

Xia, L., Guo, J. (2000). Effect of magnetic field on peroxidase activation and isozyme in Leymus chinensis, 11, 699-702.

Florez, M., . Carbonell, M. V., Martinez, E. (2007). Exposure of maize seeds to stationary magnetic fields: effects on germination and early growth, 59, 68-75.

https://doi.org/10.1016/j.envexpbot.2005.10.006

Reinke, J. (1876). Untersuchungen der Wachstrum. Botan. Ztg. 34, 129. Biological Effect on Magnetic

Fields (Ed. M. F. Barnothy). Plenum Press, 1, 183-195.

Tolomei, G. (1893). Anzione del magnetismo sulla germinazione. Malpighia, 7, 470. Biological Effect on Magnetic Fields (Ed. M. F. Barnothy). Plenum Press, 1, 183-195.

Danilewski, W. J. (1971). Studies on the influence of electricity on physiology of plants Electromagnetic fields and living nature (Ed. A. S. Presman). PWN, Warsaw, Poland.

Audus, L. J. (1960). Magnetotropism: A new plant growth response. Nature, 185, 132-134.

https://doi.org/10.1038/185132a0

Pittman, U. J. (1963). Magnetism and plant growth: I Effect of germination and early growth of cereals seeds. Can. J. Plant Sci., 43, P. 513-518.

https://doi.org/10.4141/cjps63-104

Barnothy, M. F. et al. (1969). Biological Effect on Magnetic Fields. Plenum Press. New York-London.

Presman, A. S. et al. (1971). Electromagnetic Fields and Living Nature. PWN, Warsaw, Poland.

Rochalska, M. (2005). Influence of frequent magnetic field on chlorophyll content in leaves of sugar beet plants. Nukleonika, 50, 25-28.

Novitsky, Yu. I. (1978). Plant Reactions to magnetic fields. Reactions of biological systems to magnetic fields. Moskow: Nauka, 117-130.

Krylov, A.V., Tarakanova, G. F. (1960). The Phenomenon of magnetotropism in plants and its nature, "Physiologiyarasteniy" , 7 (2), 191-97.

Presman, A. S. et al. (1971). Electromagnetic Fields and Living Nature. PWN, Warsaw, Poland.

Cholodov, J. A. (1978). Reaction of Biological Systems on Magnetic Field Moscow: Nauka.

Kutyrev, A. I. (2019). Substantiation of the parameters of the automated attachment Assembly for magnetic-pulse processing of strawberries: Diss. kand. technical Sciences: 05.20.01. Moscow, 210.

Kutyrev, A. I., Hort, D. O., Filippov, R. A. (2018). Substantiation of parameters of the apparatus for magnetic pulse treatment of plants. Bulletin of agrarian science of the Don, 1 (41), 32-38.

Hort, D. O., Filippov, R. A., Kutyrev, A. I. (2017). Development of apparatus for magnetic pulse treatment of plants. Innovations in agriculture, 1 (22), 50-55.

Izmailov, A. Y., Smirnov, I. G., Khort, D. O., Filippov, R. A., Kutyrev, A. I. (2018). Magnetic-pulse processing of seeds of berry crops Research in Agricultural Engineering, 64 (4), 181-186.

https://doi.org/10.17221/9/2018-RAE

Smirnov, I. G., Khort, D. O., Filippov, R. A., Kutyrev, A. I., Artyushin, A. A. (2018). Automated unit for magnetic pulse treatment of plants in horticulture. Bulletin of the Mordovian University, 28 (4), 624-642.

https://doi.org/10.15507/0236-2910.028.201804.624-642

Donetskikh, V. I. (2015). Study of the influence of magnetic pulses on strawberry. Fruit and berry growing in Russia, 41, 113-117.

Esitken, A., Turan, M. (2004). Alternating magnetic field effects on yield and plant nutrient element composition of strawberry (Fragaria x ananassa cv. Camarosa). Acta Agric. Scand, B-S P 54, 135-139.

https://doi.org/10.1080/09064710310019748

Lynikiene, S., Pozeliene, A. (2003). Effect of electrical field on barley seed germination stimulation. Agric. Eng. Intern., August 2003, FP. 03. - 007.

Mroczek-Zdyrska, M., Tryniecki, L., Kornarzy?ski, K., Pietruszewski, S., Gago?, M. (2016). Influence of magnetic field stimulation on the growth and biochemical parameters on Phaseolus vulgaris L. J. Microbiol. Biotechnol. Food Sci., 5, 548-551.

https://doi.org/10.15414/jmbfs.2016.5.6.548-551

Baryshev, M. G., Jimak, S. S. (2012). Investigation of the influence of low-frequency electromagnetic field on biological objects. Krasnodar: Kuban state University, 1-15.

Kutyrev, A. I. (2019). Substantiation parameters of the automated hinged unit for magnetic pulse processing of strawberry: / Diss. kand. Techn. Sciences: 05.20.01. FSAC VIM, Moscow, 210.

Savchenko, V. V., Sinyavsky A. Yu. (2013). Change of biopotential and yield of agricultural crops at pre-sowing seed treatment in a magnetic field. Vestnik of Resch., 2 (11), 33-37.

Kozyrsky, V. V., Savchenko, V. V., Sinyavsky, A. Yu. (2014). The Influence of the magnetic field on the diffusion of molecules through the cell membrane of agricultural seeds. Vestnik Resch., 2 (15), 16-19.

Published

2019-12-16

Issue

Section

??????