Неизотермический анализ топливных гранул из древесины сосны

Authors

  • Д. Н. КОРИНЧУК
  • К. А. КОРИНЧУК

Abstract

NON-ISOTHERMAL ANALYSIS OF PELLETS FROM PINE WOOD

D. Korinchuk, K. Korinchuk

 

The article is devoted to the study of the thermal decomposition of milled and granulated pine wood at various pressures. The strength of the intermolecular bonds that arise in granulated biomass can be reflected in the kinetic parameters of the thermal decomposition of biomass. Investigation of the influence of the pressing pressure on the kinetic characteristics of the thermal decomposition of biomass allows broadening the understanding of the mechanisms of biopolymers pellet formation.

The purpose of this paper is to determine the kinetic parameters of desorption of physically bound moisture and to determine activation processes of non-isothermal decomposition of hemicelluloses of wood biomass, depending on the pressing pressure, using the non-isothermal kinetics Broido model.

The work provides an analysis according to the Broido kinetic model of the thermal destruction of biofuel samples from pine wood milled and granulated at a pressure of 80 - 120 MPa selected over the territory of Ukraine. The results of calculation of kinetic parameters for the stages of desorption of physically-bound moisture and thermal decomposition of hemicelluloses are presented. The value of the activation energy of moisture desorption for pine biomass is in the range of 52.6-57.5 kJ / mol, where the less value corresponds to milled wood, and the highest value corresponds to the pressing pressure of 120 MPa. The values of the kinetic constants of the thermal decomposition of hemicelluloses are calculated. The value of the activation energy for milled biomass is 104.0 kJ / mol and increases for pellets with an increase of the pressing pressure to 137-170 kJ / mol, which are 37-70%, where a highest value corresponds to a pressing pressure of 120 MPa.

It has been established that granulated biofuel has a higher thermal stability during periods of desorption of moisture and decomposition of hemicelluloses, and it increases with increasing a pressing pressure. This fact is explained by the partial cross-linking of the macromolecules of the polysaccharide biomass complex with each other or through a water molecule, which confirms the main provisions of the molecular theory of briquetting.

 

References

Snezhkin, YU. F., Korinchuk, D. M., Mikhaylik, V. A. (2012). Kompozytsiyni palyva na osnovi torfu i roslynnoyi biomasy: syrovyna, vlastyvosti, rezhymy, obladnannya, tekhnolohiyi: monografiya [Composite fuels based on peat and plant biomassї]. K .: Vid-vo "Libid', 211.

Utgof, S. S. (2014). Identifikatsiya khimicheskikh i mekhanicheskikh izmeneniy v uplotnennoy termomekhanicheskim metodom drevesinyne olkhi [Identification of chemical and mechanical changes in thermomechanically compacted alder wood]. Trudy BGTU. Seriya 4: Khimiya, tekhnologiyaorganicheskikhveshchestv i biotekhnologiya, 4, (168), 124–129.

Maryandyshev, P. A., Chernov A. A., Shkayeva, N. V., Konstantinovich, L. V. (2013). Eksperimentalnoye issledovaniye protsessa termicheskogo razlozheniya biotopliva [Experimental study of the process of thermal decomposition of biofuel]. Vestnik Cherepovetskogo gosudarstvennogo universiteta, 2 (4 (52)), 22–25.

Maryandyshev, P. A., Chernov A. A., Lyubov, V. K. (2015). Analiz termogravimetricheskikh dannykh razlichnykh vidov drevesiny [Analysis of thermogravimetric data of various types of wood]. Khimiya tverdogo topliva, 2, 59–64.

Mar'yandyshev, P. A., Chernov, A. A., Lyubov, V. K. (2016). Analiz termogravimetricheskikh i kineticheskikh dannykh razlichnykh vidov drevesnogo biotopliva Severo-Zapadnogo regiona Rossiyskoy Federatsii [Analysis of thermogravimetric and kinetic data of various types of wood biofuel in the North-West region of the Russian Federation]. Izvestiya vysshikh uchebnykh zavedeniy. Lesnoy zhurnal, 1 (349), 167–182.

Naumovich, V. M. (1960). Teoreticheskiye osnovy briketirovaniyat orfa [Theoretical foundations of the peat briquetting process]. Minsk: AN BSSR, 208.

Broido, A. (1969). A simple, sensitive graphical method of treating thermogravimetric analysis data. Journal of Polymer Science Part B: Polymer Physics, 7 (10), 1761–1773.

Petrunina, Ye. A., Loskutov, S. R., Shishikin, A. S. (2017). Termicheskiy analiz zatoplennoy drevesiny [Thermal analysis of flooded wood]. Lesnoy vestnik. Forestry Bulletin, 21 (1), 54–63.

Terentyeva, E. P., Udovenko, N. K., Pavlova, Ye. A. (2014). Khimiya drevesiny, tsellyulozy i sinteticheskikh polimerov: uchebnoye posobiye [Chemistry of wood, cellulose and synthetic polymers]. S-Pb.: SPbGTURP, 83.

Snezhkin, Y. F., Korinchuk, D. M., Bezhin, M. M. (2017). Doslidzhennya rezhymiv termoobrobky biomasy ta torfu u vyrobnytstvi kompozytsiynoho biopalyva [Investigation of modes of heat treatment of biomass and peat in the production of composite biofuels]. Promyslova teplotekhnika, 39 (1), 53–57.

Solovyeva, T. V. (1998). Prevrashcheniye komponentov lignouglevodnoy matritsy v tekhnologii drevesnovoloknistykh plit [The transformation of the components of the ligno-carbohydrate matrix into the technology of wood fiber boards]. Minsk, 259.

Published

2018-09-10

Issue

Section

Статті