Influence of heavy metals on antioxidant system and biochemical indexes in rats



I. V. Kalinin, V. A. Tomchuk, V. A. Gryshchenko

Анотація


The study was undertaken to examine the effect of heavy metals on antioxidant system and biochemical indexes in the organism of rats. The influence of heavy metals on indexes of antioxidant system of lipid peroxidation processes indices, hydroperoxides and thiobarbituric acid (TBA)-active products and increase of activity of the antioxidant system enzymes (AOS) glutathioneperoxidase, glutationereductase, catalase and superoroxidedismutase in blood of rats was determined. It is established, that under the action of heavy metals in blood and liver of rats functions more intensively AOS. The study of enzyme activity showed the activation of the latter under conditions of heavy metal intoxication in 1.5 - 2.0 times (depending on a heavy metal), compared with control.  We found that in intoxicated rats in all experimental groups, levels of total and direct bilirubin, creatinine, urea, compared with intact animals was increased. However, a decrease in the content of albumin, total protein, cholesterol and triglycerides was also found in all experimental groups, in relation to intact rats. At the action of heavy metals rises activity of α-amylase total, lactate dehydrogenase and concentration glucose in the blood of rats. According to the results of studies in intoxicated animals, compared with the intact group, there was a change in the cation-anion pool, in particular, a tendency to decrease the content of sodium and inorganic phosphorus and increase chlorides, magnesium, calcium and potassium.

Keywords: rats, blood; liver; copper; zinc; cadmium; lead; antioxidant system.


Повний текст:

PDF (English)

Посилання


Aggarwal, V., Tuli, H., Varol, A., Thakral, F., Yerer, M., Sak, K., Varol, M., Jain, A., Khan, M.A., Sethi, G. (2019). Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules, 9(11), 735. doi:10.3390/biom9110735.

Antunes dos Santos, A., Ferrer, B., Marques Gonçalves, F., Tsatsakis, A. M., Renieri, E. A., Skalny, A. V., Farina, M., Rocha, J.B.T., Aschner, M. (2018). Oxidative stress in methylmercury-induced cell toxicity. Toxics, 6(3), 47. doi: 10.3390/toxics6030047.

Azeh Engwa, G., Udoka Ferdinand, P., Nweke Nwalo, F. & Unachukwu, N. M. (2019). Mechanism and health efects of heavy metal toxicity in humans. In Poisoning in the Modern World—New Tricks for an Old Dog? (eds Karcioglu, O. & Arslan, B.). https://doi.org/10.5772/intechopen.82511.

Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M.R. & Sadeghi, M. (2021). Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Frontiers in Pharmacology,12:643972. doi: 10.3389/fphar.2021.643972.

Batáriová, A., Spěváčková, V., Beneš, B., Čejchanová, M., Šmíd, J. & Černá, M. (2006). Blood and urine levels of Pb, Cd and Hg in the general population of the Czech Republic and proposed reference values. International Journal of Hygieneand Environmental Health, 209(4), 359–366. doi:10.1016/j.ijheh.2006.02.005.

Cao, Z. R., Cui, S. M., Lu, X. X., Chen, X. M., Yang, X., Cui, J. P., Zhang, G.H. (2018). Effects of occupational cadmium exposure on workers’ cardiovascular system. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 36(6), 474–477. doi:10.3760/cma.j.issn.1001-9391.2018.06.025.

Carvalho Cdos, S., Fernandes, M.N. (2008). Effect of copper on liver key enzymes of anaerobic glucose metabolism from freshwater tropical fish Prochilodus lineatus. Comparative Biochemistry & Physiology, 151, 437–442.

Djordjevic, V. R., Wallace, D. R., Schweitzer, A., Boricic, N., Knezevic, D., Matic, S., Grubor, N., Kerkez, M., Radenkovic, D., Bulat, Z., Antonijevic, B., Matovic, V., Buha, A. (2019). Environmental cadmium exposure and pancreatic cancer: evidence from case control, animal and in vitro studies. Environment International, 128, 353–361. doi:10.1016/j.envint.2019.04.048.

Dongre, N. N., Suryakar, A. N., Patil, A. J., Ambekar, J. G., and Rathi, D. B. (2011). Biochemical effects of lead exposure on systolic & diastolic blood pressure, heme biosynthesis and hematological parameters in automobile workers of north Karnataka (India). Indian Journal of Clinical Biochemistry, 26 (4), 400–406. doi:10.1007/s12291-011-0159-6.

Djuric, A., Begic, A., Gobeljic, B., Stanojevic, I., Ninkovic, M., Vojvodic, D., Pantelic, A., Zebic, G., Prokic, V., Dejanovic, B., et al. (2015). Oxidative stress, bioelements and androgen status in testes of rats subacutely exposed to cadmium. Food and Chemical Toxicology, 86, 25–33.

Ellman, G.L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics. 82(1), 70–77.

El Yamani, N., Collins, A.R., Runden-Pran, E., Fjellsbo, L.M., Shaposhnikov, S., Zienolddiny, S., Dusinska, M. (2017). In vitro genotoxicity testing of four reference metal nanomaterials, titanium dioxide, zinc oxide, cerium oxide and silver: Towards reliable hazard assessment. Mutagenesis, 32, 117–126.

Fay, M. J., Alt, L. A. C, Ryba, D., Salamah, R., Peach, R., Papaeliou, A., Zawadzka, S., Weiss, A., Patel, N., Rahman, A., Stubbs-Russell, Z., Lamar, P.C., Edwards, J.R., Prozialeck, W.C. (2018). Cadmium nephrotoxicity is associated with altered microRNA expression in the rat renal cortex. Toxics, 6 (1), 16. doi:10.3390/toxics6010016.

Gavrilov, V.B., Gavrilov, A.R., Khmara, N.F. (1988). Measurement diene conjugates in plasma by UV absorption heptane and isopropanol extract. Laboratornoe case. 2. 60-63. (in Russian).

Havezov, I., Tsalev, D. (1983). Atomic absorption analysis. Leningrad: Chemistry. 144. (in Russian).

Husak, V.V., Mosiichuk, N.M., Kubrak, O.I., Matviishyn, T.M., Storey, J.M., Storey, K.B., Lushchak, V.I. (2018). Acute exposure to copper induces variable intensity of oxidative stress in goldfish tissues. Fish Physiology and Biochemistry, 44, 841–852.

Kim, J.-J., Kim, Y.-S. & Kumar, V. (2019). Heavy metal toxicity: An update of chelating therapeutic strategies. Journal of Trace Elements in Medicine and Biology, 54, 226–231. https://doi.org/10.1016/j.jtemb.2019.05.003.

Kim, T. H., Kim, J. H., Le Kim, M. D., Suh, W. D., Kim, J. E., Yeon, H. J., Park, Y.S., Oh, Y.H. & Jo, G.H. (2020). Exposure assessment and safe intake guidelines for heavy metals in consumed fishery products in the Republic of Korea. Environmental Science and Pollution Research, 27, 33042–33051. doi:10.1007/s11356-020-09624-0.

Koroliuk, M.A. (1988). Method for determining activity of catalase in biological material. 2. 31-34. (in Russian).

Kucherenko, M.E., Babenyuk, Y.D., Voytsitskyy, V.M. (2001). Modern methods of biochemical research. Кyiv: Fitosotsiotsentr; 109-52. (in Ukrainian).

Kulshrestha, A., Jarouliya, U., Prasad, G., Flora, S., Bisen, P.S. (2014). Arsenic-induced abnormalities in glucose metabolism: Biochemical basis and potential therapeutic and nutritional interventions. World Journal of Translational Medicine. 3(2): 96-111 DOI: 10.5528/wjtm.v3.i2.96.

Kumar S, Sharma A. (2019). Cadmium toxicity: effects on human reproduction and fertility. Reviews on Environmental Health, 34:327–338.

Lech, T., and Sadlik, J. K. (2017). Cadmium concentration in human autopsy tissues. Biological Trace Element Research, 179 (2), 172–177. doi:10.1007/s12011-017-0959-5.

Li, H., Fagerberg, B., Sallsten, G., Borné, Y., Hedblad, B., Engström, G., Barregard, L. & Andersson, E.M. (2019). Smoking-induced risk of future cardiovascular disease is partly mediated by cadmium in tobacco: Malmö Diet and Cancer Cohort Study. Environmental Health, 18 (1), 56. doi:10.1186/s12940-019-0495-1.

Luo, L., Wang, B., Jiang, J., Huang, Q., Yu, Z., Li, H., Zhang, J., Wei, J., Yang, C., Zhang, H., Dong, L. & Chen, S. (2021). Heavy metal contaminations in herbal medicines: determination. comprehensive risk assessments. Frontiers in Pharmacology, 11, 595335. doi:10.3389/fphar.2020.595335.

Mannervik, B. (1985). Glutathione peroxidase. Methods in enzymology. 113. 490-495. (in Russian).

Ohta, H., and Ohba, K. (2020). Involvement of metal transporters in the intestinal uptake of cadmium. Journal of Toxicological Sciences, 45 (9), 539–548. doi:10.2131/jts.45.539.

Oluranti,O.I.,Adeyemo,V.A.,Achile, E.O., Fatokun, B.P., Ojo, A.O. (2021). Rutin improves cardiac and erythrocyte membrane-bound ATPase activities in male rats exposed to cadmium chloride and lead acetate. Biological Trace Element Research doi:10.1007/s12011-021-02711-4.

Orehovych, V.N. (1977). Modern methods in biochemistry, 268 p. (in Russian).

Patra, R. C., Swarup, D., and Dwivedi, S. K. (2001). Antioxidant effects of α tocopherol, ascorbic acid and l-methionine on lead induced oxidative stress to the liver, kidney and brain in rats. Toxicology, 162 (2), 81–88. doi:10.1016/s0300-483x(01)00345-6.

Proshad, R., Zhang, D., Uddin, M. & Wu, Y. (2020). Presence of cadmium and lead in tobacco and soil with ecological and human health risks in Sichuan province, China. Environmental Science and Pollution Research, 27, 18355–18370. doi:10.1007/s11356-020-08160-1.

Rani, A., Kumar, A., Lal, A. & Pant, M. (2014). Cellular mechanisms of cadmium-induced toxicity: a review. International Journal of Environmental Health Research, 24 (4), 378–399.

doi:10.1080/09603123.2013.835032.

Saghazadeh, A., Rezaei, N. (2017). Systematic review and meta-analysis links autism and toxic metals and highlights the impact of country development status: Higher blood and erythrocyte levels for mercury and lead, and higher hair antimony, cadmium, lead, and mercury. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 79, 340–368.

Saha, P. & Paul, B. (2019). Assessment of heavy metal toxicity related with human health risk in the surface water of an industrialized area by a novel technique. Human and Ecological Risk Assessment Journal, 25, 966–987. https://doi.org/10.1080/10807039.2018.1458595.

Severyn, S.E., Soloveva, G.A. (1989). Praktikum on biochemistry. 509 (in Russian).

Sharifi-Rad, M., Anil Kumar, N.V., Zucca, P., Varoni, E.M., Dini, L., Panzarini, E., Rajkovic, J., Tsouh Fokou, P.V., Azzini, E., Peluso, I., Prakash Mishra, A., Nigam, M., El Rayess, Y., Beyrouthy, M.E., Polito, L., Iriti, M., Martins, N., Martorell, M., Docea, A.O., Setzer, W.N., Calina, D., Cho, W.C. & Sharifi-Rad, J. (2020). Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Frontiers in Pharmacology, 11:694. doi: 10.3389/fphys.2020.00694.

Singh, Y. P., Patel, R. N., Singh, Y., Butcher, R. J., Vishakarma, P. K. & Singh, R. K. B. (2017). Structure and antioxidant superoxide dismutase activity of copper(II)hydrazone complexes. Polyhedron, 122, 1–15. doi: 10.1016/j.poly.2016.11.013.

Stalnaya, Y.D., Haryshvyly, T.G. (1977). Modern methods in biochemistry. 66–68. (in Russian).

Vlasova, S.N., Shabunyna, E.I., Pereslehyna, A.I. (1990). Glutathione dependent activity of enzymes in red blood cells chronic disease liver in children. Laboratornoe case. 8. 19–21. (in Russian).

Wang, Y., Mandal, A. K., Son, Y.-O., Pratheeshkumar, P., Wise, J. T. F., Wang, L., Zhang, Z., Shi, X. & Chen, Z. (2018). Roles of ROS, Nrf2, and autophagy in cadmium-carcinogenesis and its prevention by sulforaphane. Toxicology and Applied Pharmacology, 353, 23–30. doi:10.1016/j.taap.2018.06.003.


Метрики статей

Завантаження метрик ...

Metrics powered by PLOS ALM

Посилання

  • Поки немає зовнішніх посилань.